THE FLORIDA WATER-ENERGY NEXUS: PLANNING FOR CLIMATE CHANGE IN FLORIDA'S WATER AND ENERGY LAW

By Jesse Unruh *

ABSTRACT

Florida is running low on water, a fact that would have been inconceivable fifty years ago. Moreover, the impact of global climate change may further exacerbate water shortages over the coming years. Florida’s freshwater resources necessitate coordinated management and responses by regulatory agencies. Electric power generation is a regular and increasing source of water consumption. However, three agencies that have regulatory influence over power generation and water consumption, the Public Service Commission, Water Management Districts, and the Department of Environmental Protection, have little institutional coordination. This Article examines the relationship between power generation, water consumption, and global climate change. It then makes five suggestions on how to integrate water and energy research and planning among these agencies.

* J.D., summa cum laude, Florida State University Law School, 2011; M.A. in philosophy, Bristol University, 2005; B.A. in philosophy and religion, Flagler College, 2004; currently associate attorney at Tew Cardenas, LLP. The author would like to thank Professor Robin Kundis Craig for her feedback on earlier versions of this Article and Professor Mark Seidenfeld for his continued input and support. Further, the author would like to thank his wife, Sarah Unruh, for her continued support through various academic pursuits.
TABLE OF CONTENTS

INTRODUCTION .. 3

I. GLOBAL CLIMATE CHANGE AND WATER IN THE SOUTHEAST 8
 A. The Effect of Global Climate Change on Watersheds 9
 B. Climate Change and Florida’s Watersheds 12

II. THE INTERSECTION OF WATER AND ENERGY: THE NEXUS 16
 A. Energy Production’s Reliance on Water and Water Production’s Reliance on Energy ... 17
 B. Practicability of Renewables .. 22

III. FLORIDA’S LEGAL STRUCTURE FOR WATER USE AND POWER PLANT SITING ... 25
 A. Consumptive Use Permitting ... 25
 B. Florida Electrical Power Plant Siting Act 28
 C. Land Use Planning and Water Management Coordination 30

IV. PROPOSAL: INTEGRATION OF WATER AND ENERGY RESEARCH AND PLANNING .. 35
 A. Timeframe of Water Resource Planning 38
 B. Cooperative Scientific Research and Reporting 40
 C. Applying Florida’s Existing Land Use Planning Linkage to Water Policy to Energy Development .. 42
 D. Lessons from the West: Assured Water Supply Requirements 44
 E. Climate Change and Implementing Coordination 47

CONCLUSION ... 49
INTRODUCTION

Florida is starting to run low on water,¹ a fact that would have been inconceivable fifty years ago.² In Florida’s early years of statehood, Floridians viewed fresh water as an element of nature to be tamed.³ Developers and state officials saw wetlands and marshy areas as obstacles to the development booms of the 1920s and 1940s.⁴ The notion of Florida running out of water was entirely alien to the concept of what Florida was—a wetland.⁵ However, the state now engages in wetland restoration and water management to ensure that Florida does not lose its natural character and to keep water flowing to millions of Floridians.⁶

Florida grew from 2.7 million people in 1950 to 18.5 million people 2011.⁷ With the population growth came a staggering increase in water use. In 1950, the state began tracking annual water withdrawals every five years.⁸ That year, consumers withdrew 1,454 million gallons a day (Mgal/d), while in 2005 that figure increased to 6868 Mgal/d, a 470% increase in freshwater withdrawals.⁹ Since the 1980s, however, Florida has actually reduced the amount of water it withdraws because of programs designed to

¹ See CYNTHIA BARNETT, MIRAGE 2 (2007).
³ BARNETT, supra note 2 at 14-15.
⁴ Id. at 22-25. The population boom from 1940 to 1960 led to draining thousands of acres of wetlands. Id. at 24.
⁵ Id. at 13-19.
⁹ Id.
better manage the state’s water resources, conservation initiatives, water restrictions, and other mechanisms.10

While this reduction bodes well for Florida, the population continues to increase at a current rate of approximately 17\% per decade.11 If the population continues to grow at this rate, it will double by the mid-21st century.12 In addition to the increased water demands for the population, there will need to be increased food production, living areas, and power production.13

To put Florida’s problem in a more theoretical frame, the state has been experiencing firsthand the problem of the exponential increase in consumption of a finite resource. Professor Albert A. Bartlett illustrated this problem with his bottle analogy.14 While this concept is relevant to most natural resource management issues, it is particularly pertinent to water management. Consider the following hypothetical, which is derived from Professor Bartlett’s work.

10 Id.
11 U.S. CENSUS BUREAU, supra note 6.
12 Starting with the current estimated population of 18.5 million and presuming a constant population growth of 16\% every 9 years (as has been the case from 2000-2009), Florida’s population will increase to approximately 37.4 million by 2050. Id.
Imagine you have just bought a new plant that grows very quickly and, more pertinently, it is very thirsty. In fact, it doubles its water consumption every minute. As you sit down at 11:00 p.m., you set the plants roots into a bottle of water. However, based on information about the plant’s water consumption, you know for a fact that the plant will consume all the water in the bottle by midnight. After stepping away, you return at 11:30 p.m., surprised to see that none of the water appears to be gone. You sit down to take some very precise measurements and realize that thus far, the plant has only consumed 3.7×10^{-9} % of the water in the bottle. How, then, will it use all of the water in the bottle by the end of the hour?

To better understand this plant, you start from midnight and count back. You realize that if the bottle will be empty at midnight. If the plant doubles its rate of water consumption every minute, that means the bottle will be 50% drained at 11:59 p.m., and in that final minute the plant will consume the remaining water. At 11:58 p.m., the plant will have only consumed 25% of the water, at 11:57 p.m., only 12.5% of the water, at 11:56 p.m., only 6.25%, and at five minutes before midnight, only 3.125% of the water will have been consumed. With only five minutes till midnight the loss of water will still be barely perceptible.

Then you start to think about how you will manage to get this plant through the night considering how much water it requires. Even if you could find seven more bottles, you realize that at 12:01 a.m., the plant will have
consumed an entire additional bottle of water, at 12:02 a.m., two more bottles, and then at 12:03 a.m., four more bottles. To keep it going until 12:04 a.m., you’ll have to find an additional eight bottles of water. You now realize what a significant problem you are faced with—one which appeared a speculative problem at a mere five minutes till midnight.

With this hypothetical in mind, the issues that water managers face in Florida become apparent. Assuming an increase in population of 17% per decade, Florida will be doubling its population every fifty or so years. A single doubling in demand could precipitously affect the water resources in Florida depending on how “close to midnight” it is, or how close the state is to exceeding the bounds of its water resources.

One of the primary industries that water availability affects is electric power generation. Many energy production methods rely on water for cooling and without water to cool the plant, they cannot operate. Power plants affect water resources and Florida’s increasing population in multiple ways. First, they account for consumptive use of both fresh and saltwater

15 The equation would be: \(F = P e^{RT} \). Where \(F \) is the future population, \(P \) is the present population, \(e \) is a mathematical constant used for calculating continually compounding growth, \(R \) is annual percent increase, and \(T \) is the number of years. For any given \(P \), it will increase to 2.23\(P \) every fifty years if there is a constant, compounding 16% growth per decade. See JOHN H. VANDERMEER AND DEBORAH E. GOLDBERG, POPULATION ECOLOGY FIRST PRINCIPLES 3-5 (2003).

resources in Florida.18 Second, power plants have long operational periods, demanding regular sources water over extended periods of time.19 Finally, power plants fulfill the demand for electricity which is becoming increasingly essential to keep lives and businesses functioning normally in Florida as air-conditioning, computer equipment, and industrial refrigeration are essential for many types of industry in Florida.20

Another burden on Florida’s water sources is altered precipitation patterns. Florida will see altered precipitation patterns and uncertain water resources because of global climate change and must plan for future changes in water availability.21 Specifically, the state should develop a coordinated planning strategy among the Public Service Commission (PSC), the Department of Environmental Protection (DEP), and the Florida Water Management Districts (WMDs) to begin to plan for the potential effects of climate change.

The goal of this Article is to develop a proposal for coordinated planning efforts for water and energy resources among the agencies responsible for Florida’s water resource management and power plant siting.

Part II of this Paper presents a view of global climate change and its potential effects on Florida’s water resources. Part III develops the relationship between water resources and energy production. Part IV presents the current regulatory structure for water consumption and power plant siting in Florida. Part IV also illustrates how land use planning addresses the effects of development on water resources as an example of how Florida may create cooperative water-energy planning. Part V proposes several specific areas of agency coordination, including timeframe coordination, cooperative research, adapted land use mechanisms for water management, and assured supply laws. The Paper ultimately concludes that agency coordination should be established now, prior to the onset of further effects of climate change.

I. GLOBAL CLIMATE CHANGE AND WATER IN THE SOUTHEAST

Climate change will have global consequences, some that are relatively predictable and some more uncertain.\(^{22}\) How watersheds will change is one of the uncertainties.\(^{23}\) By the end of the century we can count on average global temperatures increasing by approximately five to seven degrees Fahrenheit.\(^{24}\) This change has already begun and it will continue for some

\(^{23}\) Id. at 37-38.

\(^{24}\) See INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, CONTRIBUTION OF WORKING GROUP I TO THE FOURTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, 2007, ch. 10 Executive Summary (S. Solomon et al. eds., 2007) http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch10s10-es-1-mean-
time regardless of human activities to prevent it—it took a long time to get this point and it will take a long time to redress the problems.25

Subsequently, climate change will alter the water cycle and will thus have a significant impact on our societies, which count on water flowing in roughly the same pattern in perpetuity.26 These effects of climate change are already occurring and will take a very long time to redress if it is even possible.

A. The Effect of Global Climate Change on Watersheds

The impacts of climate change on watersheds across the globe will alter the way our social and legal structures deal with water. The concept of “stationarity” framed the development of America’s water law and water resource planning—meaning that throughout all of American legal history water patterns were essentially unchanging.27 As cultural and legal structures formed over centuries, water cycles had seasonal, annual, and multi-year variations that fit “within an unchanging envelope of variability.”28 Society put systems in place—be it aqueducts, sewers, or water law—that were able to handle variations within this envelope.29 However outside of this envelope, these cultural and legal structures are often unable to

26 See GLOBAL CHANGE 2010, supra note 22 at 37-38.
27 Robert W. Adler, Climate Change and the Hegemony of State Water Law, 29 Stan. Environmental L.J. 1, 8 (2010).
29 See id.
maintain the status quo. Climate change will likely push our society outside of this envelope and these social structures will have to change to deal with the alteration.

First, and most directly, climate change will have a significant impact on the cycle of evaporation and precipitation. Not only will the rate of evaporation change, but wind patterns may change local precipitation patterns. Moreover, increased atmospheric heat means water will remain in the atmosphere longer. The increased temperature will also allow cloud formations and evaporated water to travel farther than has historically been the case. Changes like these are already evident. For example, annual precipitation has increased in most of North America, but has decreased in the Southwest United States.

There will also be secondary effects of climate change on water resources. First, changes in the location of fresh water will require either large relocation of population centers or transport of freshwater to current cities. Precipitation changes will also result in altered irrigation for farmlands, which will contribute additional stress to already overburdened

30 See id.
31 Adler, supra note 27, at 10-11.
32 Id.
36 See id. at §7.4.
irrigation sources. Additionally, precipitation changes and the accompanying alterations in human demand for water will likely be serious stressors to aquatic ecosystems.

Another effect of rising global temperatures is an increase in power consumption. For instance, climate change will cause an increased need for air-conditioning. Some estimates place power-use related to air conditioning in America at almost 20% of all power used. The effects on power consumption would vary regionally. In Florida, for example, an increase of two degrees Celsius would cause an 11.6% increase in per capita residential power-use due to air-conditioning. But that same temperature increase in Washington state would reduce per capita energy consumption by 7.2% because of reduced demand for heat. Thus, climate change will alter both sides of the water-energy relationship.

Climate change will continue to progress for some time regardless of efforts to reduce greenhouse gasses (GHGs). The anthropogenic increase in atmospheric carbon began with the industrial revolution. Industrialized

38 See id. at 724.
42 Id. at 19.
43 Id.
44 See IPCC WGI, supra note 25, at § 10.3.
nations do not yet have the resources to use exclusively non-fossil fuel based energy production methods, so atmospheric carbon will continue to increase for at least some time. Additionally, sea level rise, which is caused by climate change, will continue and the ocean will stay elevated long after atmospheric carbon levels and temperatures fall due to the thermal inertia of water. The causes of climate change have been compounding for many years and it will take many years to return the climate to a pre-industrial state. Alterations in GHG production can only hope to reduce the extent of climate change in the short-term. Therefore, planning to adapt to the coming changes is essential.

B. Climate Change and Florida’s Watersheds

Florida’s government has acknowledged that climate change will have a significant impact on the state. In 2007, Governor Charlie Christ signed three executive orders designed to reduce GHGs in which he recognized that GHGs are changing earth’s climate. One of climate change’s largest impacts on Florida will be sea level raise. Florida has over 1300 miles of coastline, and climate change could substantially alter the character of those

47 Id.
49 See IPCC WGIII, supra note 46, at Summary for Policymakers § C.
coasts. Sea level rise is caused primarily by the thermal expansion of the world’s oceans and continental glacier ice breaking off into the oceans. As the temperature of the earth increases because of global warming, so too does the volume of water and the amount of sea ice. Sea level rise will have obvious and direct effects on Florida’s economy. For example, the loss of beaches and barrier islands due to sea level rise would severely impact Florida’s tourism and real estate markets. However, there may be less obvious and more pernicious impacts of sea level rise.

Saltwater has been intruding into Florida’s aquifer system for some time. As Floridians consume water out of the aquifers, saltwater infiltrates to take up the space. Saltwater intrusion, in turn, reduces the amount of fresh water available to millions of Floridians for drinking and municipal use. Saltwater intrusion can also harm industry—particularly agriculture.

54 While thermal expansion may seem to be a small effect, when it occurs through all the oceans it can result in a substantial increase in the volume of the world’s oceans. Id.
56 “According to a 2007 study, if a rise of 58 centimetres were realized by 2050, it would cost Florida $92 billion per year owing to losses in tourism and real estate” Id.
Saltwater has already forced farmers to change their source of water for their crops, increasing strains on other parts of Florida’s water supply system and costs to the farmers. Saltwater intrusion’s impact on agriculture will likely only be made worse by sea level rise and is only one element of global climate change.

Current climactic events that have a significant impact on crop yields may be further magnified by climate change. For example, Southeast corn production experiences up to a $200 million variability in yields from El Niño years to La Niña years. Climate change will likely exacerbate the El Niño and La Niña cycles and, accordingly, the impact on crops. Additionally, increased sea levels will result in saltwater infiltration into rivers, streams, and wetlands that are near or adjacent to the ocean, which will negatively impact Florida’s fishing industry. Salinity at the mouth of the Apalachicola River has long been an issue of concern. Americans get 10% of their

61 See id.

63 Hansen et al., supra note 61.

64 Global Warming Frequently Asked Questions, supra note 61.

oysters from Apalachicola and if the salinity level of these areas is affected it can lead to reduced oyster harvests.

In addition to the increased issues with ocean water, precipitation will change. The two primary climate prediction models conflict as to whether there will be more or less precipitation in Florida. Both the Canadian and the Hadley models agree that Florida will see temperature increases altering the state’s precipitation patterns. In the Canadian model, Florida, and the Southeast generally, will see a reduction in precipitation. However, the Hadley model indicates that central and northeastern Florida will see up to an approximate 20% increase in precipitation. A decrease in precipitation in Florida creates obvious problems for public supplies of water, the ecology of the state, and, as we shall see, energy production. On the other hand, if the Hadley model proves accurate, the greater precipitation may be a boon for Floridians and the ecology of the state. However, more precipitation and altered water patterns would still create many problems that water and energy planners would have to address. Increased
precipitation would still create many ecological problems as wetlands, lakes, and rivers would be overwhelmed with more water than they historically receive. Additionally, increased precipitation will increase flooding problems, which can introduce many types of toxins into the environment that would otherwise remain outside of the water column. Considering the potential impacts of these changes, Florida has already begun to plan for climate change. However, there should be a special focus on the water-energy nexus.

II. THE INTERSECTION OF WATER AND ENERGY: THE NEXUS

Nearly all kinds of conventional energy production rely on a regular supply of water. The connection between water and energy begins with fuel extraction, includes production, and goes all the way to transportation and storage. First, resource extraction of oil, gas, coal, and uranium all use water in various ways. Next, shipping these fuels to the power plants relies on rivers and waterways and increases the risk of pollution to those waterways. Finally, electric power generation uses water to operate steam turbines, for scrubbing and cleaning activities, and most significantly, for

80 See id. at 17.
81 See, e.g., id.
83 Id.
84 Id.
On the other side of the nexus, water resources have an impact on electricity use. Extraction, transport, treatment, and other activities related to water use all consume energy. Therefore, the interconnectedness between water and power production should be studied and considered by water and energy planners.

A. Energy Production’s Reliance on Water and Water Production’s Reliance on Energy

Conventional steam and combined cycle power plants account for nearly 80% of Florida’s net power capacity. Both of these, which are thermoelectric methods of power generation, use water. Some water is used to turn turbines, while some is used to cool the plant. Thermoelectric power generation on average results in a consumption rate of 0.14 gallons of water per kilowatt hour (G/kWh) and accounts for nearly twenty million gallons of water consumed in Florida annually. Total water use related to power generation in Florida accounted for only 2% of water use in Florida in 2005. However, by 2025 it is projected to grow to 6%. While that figure is small compared to the two primary water uses, public supply and

85 Id.
89 Id.
91 Janet Llewellyn, Director of Water Resource Management for the Florida Department of Environmental Protection, Presentation at Florida State University College of Law’s 2010 Florida Water Law Class (Sept. 29, 2010).
agricultural use, in a state where water resources are becoming more scarce, this is still an area of concern, particularly when considered alongside the projected trend of increased water-use.

Recent national energy policy has shifted toward nuclear energy. The Obama administration plans to triple funding for nuclear power development, resulting in enough capital to develop six to seven new nuclear power plants nationally. Increased nuclear power production will significantly affect water policy because nuclear energy uses 25% more water to produce the same amount of electricity as a coal-fired power plant. Many nuclear power plants, including most in Florida, use sea water for cooling, which has less of an impact on water management analysis for freshwater supplies. However, nuclear power plants create other problems related to water resources, such as heat pollution which affects coastal biology. Florida is in the process of making decisions about nuclear power now. Notably, there are current applications to add two reactors at the Turkey Point Power Plant.

in South Florida. The state should make these decisions with full consideration of potential water impacts.

On the other side of the equation, water withdrawal can constitute a significant burden on power production. Current methods of water extraction in Florida are not energy intensive because most of Florida’s freshwater supplies come from the aquifers and surface waters. Energy used for water extraction in Florida is different from other areas of the country, such as the arid West, where activities related to water-use account for twenty to 30% of the power used. Water and power production creates a re-enforcing cycle, whereby the more water a state needs, the more energy the state requires to produce and process it, thus requiring more water, and so on. While this effect is certainly not the primary mover in water and energy demand increases, it illustrates the close relationship of the two. Moreover, if there is an increased demand on either side (if water processing starts to require more energy, or if power production begins to require more water), the impact of this effect can become magnified.

As the climate warms and the available amount of freshwater in Florida decreases, organizations have begun to look to alternative methods

98 See Cohen, supra note 85, at 16
99 See Southwest Florida Water Management District, West-Central Florida’s Aquifers, 2, http://aquacomm.fcla.edu/1541/1/Aquifer.pdf (noting that some aquifers are under pressure resulting in water that will rise above the aquifer).
100 Cohen, supra note 85, at 16.
101 See id.
of procuring drinkable water, some of which can increase energy demands. Desalination is one way of ensuring freshwater supplies will be available. It also guarantees that freshwater will become more energy intensive. Florida has already taken the first steps in desalination with the Tampa Bay Seawater Desalination Plant. Problems have plagued the plant so far, including opening five years later than expected, being forty million dollars over budget, persistent clogging with the membranes, and not meeting processing goals. However, even presuming that the plant was working at peak capacity, it would still result in a significant increase in energy consumption per gallon of drinkable water. Electricity accounts for half of the plant’s annual budget and it would be even higher if the plant were not adjacent to a power plant. It is estimated that in some desalination plants, it takes approximately 4400 to 5500 kWhs to process one acre-foot of sea water into drinkable freshwater. To put that in

108 Id.
109 Cohen, supra note 85, at 17. However this figure does drop when brackish water, instead of seawater is being processed. See Craig, Water Supply, Desalination, Climate Change, and Energy Supply, supra note 101, at 248. For
perspective, the average American household uses about 11,000 kWhs and 146,000 gallons, about half an acre-foot, of water annually.110 Thus, a household would increase its energy consumption by roughly 25% by using desalinated water.

The relationship between water and energy is becoming more evident as water resources dwindle and the demand for power increases.111 The nation is addressing energy demand in multiple ways that have an impact on water, such as the increased development of nuclear power plants.112 Additionally, automakers are increasing efforts to develop electric cars that charge from the utility grid.113 While these reduce, and in some cases even eliminate tailpipe emissions, they increase electric demand.114 In turn, the increased demand creates increased demand on water resources where the power is generated.115

The connections between water and energy discussed above are some of the most direct connections. Other important issues also exist, such as

\footnotesize

111 See Craig, Water Supply, Desalination, supra note 102, at 247-48; Cohen, supra note 86, at 16-17.

112 Obama & Biden, supra note 91.

114 Utilities Conflicted Over Electric Cars, GM-VOLT.COM (Nov. 24, 2010), http://gm-volt.com/2010/11/24/utilities-conflicted-over-electric-cars/ (noting that “coming tidal wave of electric vehicles is both a blessing and a curse for electric utility companies”).

115 The increased demand will create a greater public need for electric production, resulting in more power plants and greater water withdrawal.
water quality problems related to coal shale fracturing techniques for natural
gas extraction,116 water quality problems related to barge transport of
energy production fuels,117 and even the large amount of evaporation
related to hydroelectric dams.118 As the population increases, demand for
more power will also increase. As a result, the connection between water
and energy production should be addressed now rather than later.

\textit{B. Practicability of Renewables} 119

Some renewable sources of energy promise to relieve the burden on
water supplies.119 However, the prospect of using these power production
methods on a large scale in Florida is currently bleak.120 Renewables only
account for 8\% of national energy production,121 which is almost as much as
nuclear energy production.122 Between 2008 and 2009 there was a 5\%
increase in renewable production.123 Some renewable energy sources do not
have significant implications for water resources, such as solar photovoltaic

\begin{footnotesize}
\begin{enumerate}
\item While much research remains, there are initial concerns about contamination of underground water resources due
to natural gas drilling. \textit{See In Pa. the fate of “fracking” depends on what river you live near}, NEWSWORKS (July 27,
\item Woodhouse, \textit{supra} note 82, at 18.
\item Id.
\item \textit{ENERGY DEMANDS ON WATER}, \textit{supra} note 16 at 41.
\item \textit{See, Renewable Energy in Florida}, NATIONAL RESOURCE DEFENSE COUNCIL http://www.nrdc.org/energy/renewables/florida.asp (last visited Dec. 5, 2010) (indicating wind is not currently a
\textit{ASSESSMENT OF RENEWABLES IN FLORIDA}] (indicating wide scale solar power is not a viable option).
\item Id. (indicating that nuclear power accounts for 9\% of national energy consumption).
\item Id.
\end{enumerate}
\end{footnotesize}
(PV) and wind power. However, other types of renewables consume water, such as biomass, concentrated solar, and geothermal.

While it is intuitive to think Florida, the Sunshine State, would be a natural fit for PV energy production, the amount of solar resources in the state are only moderate. Solar power would be most effective in the summer months to mitigate air-condition related peak loads. Because summer peaks are highest on sunny days when air-conditioning is used most, those days would also correspond to the times when solar energy production would be at its peak. However, during peaks in winter months there would be no correlation to sunshine, thus solar would not help mitigate peak energy consumption in the same way. Ultimately, for large-scale power production, PV is one of the costliest methods of generating power and Florida is ill suited to use solar for large-scale power production.

Wind power, likewise, is a renewable energy source that would have little direct impact on water resources. However, nearly all of Florida’s commercially viable locations for wind farms are offshore. Wind power technology has significantly advanced, reducing the cost of wind energy; it was 80 cents per kWh in 1979 and had dropped in some areas to as low as

124 ENERGY DEMANDS ON WATER, supra note 16 at 10.
125 Id. at 18.
126 ASSESSMENT OF RENEWABLES IN FLORIDA, supra note 119, at 31
127 Id. at 33.
128 Id.
129 See id.
130 See id.
131 ENERGY DEMANDS ON WATER, supra note 16 at 10.
4-6 cents per kWh in 2000. However, Florida’s land based wind speed averages between 12 and 14 miles per hour, which results in a cost of 57 cents per kWh. That price is over ten times higher than the cost of electricity from traditional power production methods. Offshore wind farms would have somewhat better wind resources because of more reliable and stronger winds; however, these farms would likely face a host of regulatory challenges, making them currently unfeasible.

Ocean based hydrokinetic power production may be a power generation method for Florida that does not negatively affect Florida’s freshwater resources. For instance, some technologies can convert wave or deep sea currents into electric power. Currently, there is interest from the Department of Energy in developing these sources of power. However, these technologies are still far from offering an alternative to conventional power generation methods.

Ultimately, Florida will not be able to supply enough low-water renewable energy to avoid needing a coordinated approach between water and energy policy. With intermittent solar resources and small land and

133 ASSESSMENT OF RENEWABLES IN FLORIDA, supra note 119, at 51.
134 Id.
135 Id. at 42.
138 Id.
140 Id.
ocean-based wind resources, Florida will have to continue to rely upon thermoelectric methods of power generation. Because these conventional methods of power generation will continue to depend upon water to cool and clean the power plants Florida should plan on energy production continuing to affect Florida’s water supply.

III. FLORIDA'S LEGAL STRUCTURE FOR WATER USE AND POWER PLANT SITING

In Florida, two separate entities issue licenses for water use and power plant development despite that these resources are intimately related and will grow to be more related as climate change and dwindling water resources impact Florida. Each agency has a set of criteria that it must consider prior to issuing permits. However, there is no set, forward-looking procedure to coordinate water resource management between these two agencies.

A. Consumptive Use Permitting

The Florida Water Resource Act (FWRA) governs permit requirements for water withdrawal for consumptive use in Florida. Power plants require a Consumptive Use Permit (CUP) for water to use for cleaning, cooling, and

141 Woodhouse, supra note 81, at 18.
144 See Fla. Stat. § 373.219.
other power plant activities.145 CUPs are issued if the proposed water withdrawal meets three conditions: the use “is a reasonable-beneficial use,”; it “will not interfere with any presently existing legal use of water”; and it “is consistent with the public interest.”146 The FWRA further breaks down the public interest element into a several-factor analysis that considers factors such as the environmental impact and the capital investment in the water-related infrastructure.147

Florida charged its five Water Management Districts (WMDs) with issuing CUPs.148 The districts are divided according to the geographical lines of the watersheds in Florida, not political boundaries.149 Each WMD is responsible for creating the permitting structure for its jurisdiction.150 Permits vary based on how much water is available within the district. For example, the Southwest Florida WMD, which has relatively low water resources, requires a Small General Water Use Permit for uses less than 100,000 gallons per day (gpd).151 However, some particularly wet areas of the Northwest Florida WMD do not require a permit for any consumptive use

145Woodhouse, supra note 82, at 18.
146 Fla. Stat. 373.223(1).
147 Fla. Stat. § 373.223(3).
148 Florida Water Management District Permitting Portal, supra note 142.
149 See Water Management Districts, FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION, http://www.dep.state.fl.us/secretary/watman/ (last updated June 18, 2008).
150 Id.
151 Water Use Permit, SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT, http://www.swfwmd.state.fl.us/permits/wup/#wup_renew_modify (last visited Dec. 5, 2010).
less than 1.4 million gpd, where it is not from a well greater than ten inches in diameter, and is not for public supply or bottled water use. 152

CUPs are not principally focused on planning for the future; the determination is based on whether the use applied for meets the statutory criteria. 153 The WMDs incorporate some levels of planning for future water resources in the form of minimum flow and level requirements. 154 However, the WMDs only began to establish minimum flows after a successful citizen suit in 1993. 155

The State uses CUPs to manage water resources in the respective watersheds; however, there has been criticism focused on the over-granting of CUPs. 156 The problems associated with excessive permitting are most evident within those coastal counties where saltwater intrusion and water scarcity are occurring. 157 Increasing competition for water resources will likely exacerbate these issues as populations continue to grow and, especially, as water resources begin to dwindle.

The WMDs and the DEP bear the responsibility for protecting and overseeing the water resources in Florida. 158 However, these agencies do not

154 Id. at 43-44.
156 Christaldi, supra note 59, at 1084.
157 Id.
have authority over power plant siting.159 Given the extensive interconnections between water and energy, these agencies could more effectively plan for the future of Florida’s water resources if they had more direct interaction with power plant siting decisions. Additionally, coordination between these agencies would provide better insight into Florida water use.

\textit{B. Florida Electrical Power Plant Siting Act}

The Florida Public Service Commission (PSC) is the primary regulator of public utilities in Florida; its responsibilities include power plant siting.160 The PSC authorizes the siting of power plants based on the Florida Electrical Power Plant Siting Act (FEPPSA), which mandates the PSC to evaluate the need of a new power plant based on a set of criteria that does not include planning for water resources.161 Specifically, the PSC will consider whether the plant will: (1) “[p]rovide needed base-load capacity;” (2) enhance production “by improving the balance of power plant fuel diversity and reducing Florida’s dependence on fuel oil and natural gas;” and (3) “provide the most cost-effective source of power, taking into account the need to improve the balance of fuel diversity, reduce Florida's dependence on fuel oil and natural gas, reduce air emission compliance costs, and contribute to the long-term stability and reliability of the electric grid.”162

\begin{footnotesize}
\begin{enumerate}
\item See Fla. Stat. § 403.519 (2010).
\item Id.
\item Id.
\item Fla. Stat. § 403.519(b).
\end{enumerate}
\end{footnotesize}
The PSC can consider water when evaluating the above elements. For instance, it would likely play a role in evaluating cost-effectiveness. However, evaluating the effect on water resources is not required. More to the point, water management, ecological implications, and the effects of climate change on water may be considered however, that consideration is not mandated.

The Florida Legislature explicitly recognized that siting electric power plants has a significant impact on the natural resources of the state.163 Moreover, the stated policy of Florida is that:

\begin{quote}
[W]hile recognizing the pressing need for increased power generation facilities, the state shall ensure through available and reasonable methods that the location and operation of electrical power plants will produce minimal adverse effects on human health, the environment, the ecology of the land and its wildlife, and the ecology of state waters and their aquatic life and will not unduly conflict with the goals established by the applicable local comprehensive plans.164
\end{quote}

One of the reasons the FEPPSA was passed was to ensure that power plant siting would have minimal adverse impacts on the environment.165 However, the act prescribes no specific method of ensuring that the effects will be minimal. Moreover, the language of the act is focused on land use planning rather than on the consumptive use of water, because

\begin{itemize}
\item 163 Fla. Stat. § 403.502.
\item 164 Id.
\item 165 Nassau Power Corp. v. Beard, 601 So. 2d 1175, 1176 (Fla. 1992); Tampa Elec. Co. v. Garcia, 767 So. 2d 428, 433-34 (Fla. 2000).
\end{itemize}
it specifies that there be no conflict with applicable local comprehensive plans, which are a fundamental element of land use planning.166

The PSC has an interest in Florida water resources beyond the general welfare of the state and the regulation of power plant siting. The PSC regulates all utilities, which include water and wastewater utilities.167 Because the PSC’s interests extend into multiple areas that are directly affected by the amount of water available in the state, coordinating water planning with other agencies would serve its interests. Moreover, the state would benefit from siting power plants so that they have less of an impact on state-wide water resources. Ultimately, the PSC would benefit from coordination with WMDs.

\textit{C. Land Use Planning and Water Management Coordination}

For some time now, Florida has recognized the connection between land use planning and water management.168 It is clear that urban growth can significantly impact local water resources.169 One of the most direct impacts is caused by increases in impermeable surfaces.170 Precipitation falling on these surfaces cannot filter into the soil; therefore, it is runoff and becomes a part of a city’s wastewater problem, which requires treatment.

\begin{footnotesize}
\begin{enumerate}
\item[166] See Fla. Stat. § 403.502.
\item[168] Klein, supra note 153, at 47.
\item[169] Id.
\item[170] Id.
\end{enumerate}
\end{footnotesize}
and processing. More importantly, that water will not follow the natural process of entering the soil and subsequently replenishing the aquifers. Additionally, because of the large wetland areas in Florida, many land use decisions have impacts on the health of wetlands which are an integral part of the water ecosystems in Florida.

The clearest examples of coordination between land use planning and water resource management are in arid western states. Approximately two-thirds of western states coordinate land use and water resources. One method of coordination - assured water supply laws - mandates that a developer secure an adequate supply of water for development prior to agency approval. Assured supply laws give agencies considerably more information about impacts on water resources. For example:

If the developer needs to demonstrate it has secured 7,500 acre feet of water to satisfy an assured supply requirement, but the developer can show that xeriscaping yards in the subdivision will reduce that demand to 6,500 acre feet, or project opponents can show the subdivision's real impact is to consume far more than 7,500 acre feet because it is poorly designed, causes wetland loss, and increases impervious surfaces, suddenly the local zoning commission has before it considerable land-water interaction evidence that would not

172 See id.
175 Ellen Hanak & Margaret K. Browne, Linking Housing Growth to Water Supply: New Planning Frontiers in the American West, 72 J. AM. PLAN. ASSN 154, 154 n.1 (2006) (noting that eleven of the seventeen western states have some form of water supply requirement for development); Id.
176 Davies, Hot Fuss, supra note 174.
necessarily have been taken into account in the pre-assured supply world.177

The three goals of assured supply laws are protecting consumers, implementing holistic planning, and protecting the environment.178 Initially, assured supply laws were viewed as the latest and greatest element to ensuring sufficient water supply for the future.179 However, if the laws are poorly designed, they can promote the ills they seek to remedy by furthering problems such as urban sprawl.180 For instance, if the assured supply laws result in increased costs, developers will build further away from the urban core to reduce real estate cost and keep housing prices competitive, but also increasing sprawl.181 Ultimately, assured supply laws can contribute to efficient land use and water resource management; however, the success of the laws is contingent upon the minutia of the plan and specific area.182

Florida has implemented a different model for water resource planning for land use.183 Florida requires the state comprehensive land use plan to “[s]et forth and integrate state policy for Florida's future growth as it relates to land development, air quality, transportation, and water resources.”184 In addition to the state comprehensive plan, the Florida Department of

\begin{footnotes}
\item[177] Id. at 1236 (citations omitted).
\item[178] Id. at 1229.
\item[179] Id. at 1292.
\item[180] Id.
\item[181] Id. at 1234.
\item[182] Id. at 1292.
\end{footnotes}
Community Affairs185 prepares the State Land Development Plan, and the DEP prepares the Florida Water Plan, both of which address water supply planning.186 Florida’s eleven regional planning councils also address water resource planning because the regional plans are required to be consistent with the comprehensive plan.187 Finally, water planning is considered on the local level as well because all of Florida’s cities must prepare comprehensive plans,188 which must include provisions for “general sanitary sewer, solid waste, drainage, potable water, and natural groundwater aquifer recharge element correlated to principles and guidelines for future land use”189 Thus, land use planning in Florida, from the state comprehensive plan all the way down to local comprehensive plans, must take into account water resources and the impact of future development on these resources. The WMDs also play a role in local land use planning because they are mandated to assist local governments in developing the elements of the local comprehensive plan that relate to water resources.190

While the WMDs assist local governments, they also have their own responsibilities regarding land use and water resource management. The

\begin{footnotesize}
\begin{itemize}
\item As of October 1, 2011 the Department of Community Affairs has been merged into the Florida Department of Economic Opportunity. Frequently Asked Questions, Florida Department of Economic Opportunity, http://www.floridajobs.org/frequently-answered-questions-directory/frequently-answered-questions/category/95b6d798-fea4-4d0c-8780-0d58825a5cad.
\item O’Brien & Markham, supra note 183, at 6.
\item “Florida’s Growth Management Act . . . requires all of Florida’s 67 counties and 410 municipalities to adopt Local Government Comprehensive Plans that guide future growth and development.” Growth Management and Comprehensive Planning, supra note 166.
\item Fla. Stat. § 163.3177(6)(c) (2010).
\item Fla. Stat. § 373.711.
\end{itemize}
\end{footnotesize}
public interest element of analysis for granting CUPs must consider “the projected populations, as contained in the future land use elements of the comprehensive plans adopted . . . by the local governments . . . [which] will be considered together with other evidence presented on future needs of those areas.”¹⁹¹ Furthermore, the WMDs are required to have a comprehensive water management plan that accounts for water resources twenty years into the future.¹⁹² The plan must include elements such as minimum flows and levels, and technical data compiled.¹⁹³

The WMDs’ responsibilities are strongly tied to planning for future land use; however, ultimately, WMDs’ issuance of CUPs is not planning.¹⁹⁴ Permitting and planning are fundamentally different resource management techniques.¹⁹⁵ Permitting, in the consumptive water use context, is primarily focused on addressing whether the consumptive use will cause current adverse effects on water resources.¹⁹⁶ Planning, on the other hand, is future-looking; it focuses on when and where development will occur.¹⁹⁷ As then-Senior Assistant General Counsel for the St. Johns River Water Management District put it, “[p]lanning should ask ‘what,’ ‘where,’ and ‘when,’ whereas permitting should ask ‘how.’ ”¹⁹⁸

¹⁹¹ Fla. Stat. § 373.223.
¹⁹³ Fla. Stat. § 373.036(2)(b); Fla. Stat. § 373.711.
¹⁹⁵ Id. at 232-33.
¹⁹⁶ Id.
¹⁹⁷ Id. at 232-33.
¹⁹⁸ Id. at 233
While Florida has made many attempts to link land use planning with water resource management through various legislative and administrative efforts,199 criticism persists that these links are not sufficient to substitute for a robust water planning system.200 Even so, Florida has devoted no equivalent effort to linking water and energy use.

IV. PROPOSAL: INTEGRATION OF WATER AND ENERGY RESEARCH AND PLANNING

Florida would benefit from a coordinated approach to water management among the WMDs, DEP, and the PSC because a well-structured plan would enable the state to optimally manage its declining water resources while still providing sufficient energy. Furthermore, the uncertainty of climate change means that planners will likely have to develop plans that are adaptable to changing conditions. Lacking a coordinated plan could entail problems with, for example, Duke Energy Corporation’s hydroelectric facilities along the Catawba River.201 Duke is seeking a new fifty-year license for its eleven reservoirs and thirteen hydroelectric facilities along the Catawba River, which flows between North and South Carolina.202 However, the South Carolina Attorney General filed suit to intervene to block Duke because, he asserts, Duke’s water flow estimations are incorrect, and

\begin{flushleft}
199 Id. at 234-35. \\
200 Id. at 248; O’Brien & Markham, supra note 183, at 6-7. \\
201 Susan Stabley, S.C. to fight Duke’s Catawba River license, CHARLOTTE BUSINESS JOURNAL (MAY 8, 2009) http://www.bizjournals.com/charlotte/stories/2009/05/04/daily64.html. \\
202 Id.
\end{flushleft}
because the river will be “‘extraordinarily taxed’ beyond Duke’s environmental calculations.” While conflict exists not between two state agencies, but between the state and Duke in its application to the Federal Energy Regulatory Commission, this conflict nevertheless illustrates how uncoordinated planning, when faced with changing water supplies, can lead to conflict that implicates energy production.

Ultimately, conflicts of this nature could cause problems in Florida. First, these problems can lead to increased utility rates and the possibility of interruption in service. Second, private industry and jobs in Florida would be harmed because of the potential regulatory and price uncertainty that would accompany conflicting plans from the various agencies. And finally, the agency goals themselves would be frustrated because, once a power plant is in place, a long-term requirement exists for water and regular service from the plant, and these long term commitments may conflict with the long-term plans of the respective agencies.

The connection between water and energy is an increasingly-discussed issue in legal and public policy circles, and both states and the federal government are beginning to realize that regulators cannot efficiently manage these two resources without first addressing their

203 Id.
205 See id.
206 See supra Parts IV.A, IV.B.
interconnectedness.207 Much of the research and commentary focuses on the water-energy connection in the Southwest.208 However, in late 2006 the Department of Energy reported to Congress on this connection and concluded that “[c]ollaboration on energy and water resource planning is needed among federal, regional, and state agencies as well as with industry and other stakeholders.”209 Since the early 2000s, regulators and the energy industry have seen conflicts between proposed power plant locations and water resource plans.210 One such conflict in Maryland resulted from an application for a permit to use wastewater to cool a nuclear power plant.211 The county commission denied the wastewater application because it feared the decrease in need would result in regulators denying the county’s future application for new water.212 The only other source of water was the Potomac River;213 thus, if the power plant is to be built, the regulatory conflict will lead to it consuming 2.4 to 4 million gpd of freshwater rather than wastewater.214

\begin{flushleft}
207 See Energy Demands on Water, supra note 16, at 49.; Cohen, supra note 85, at 16-17 (focusing on the “Water-Energy Nexus”).
208 Cohen, supra note 85, at 16-17 (focusing on the “Water-Energy Nexus”).
209 Energy Demands on Water, supra note 16, at 49.
211 Maryland County denies cooling water to proposed power plant, U.S. Water News Online (Oct. 2007) http://www.uswaternews.com/archives/arcupply/7marycoun10.html.
212 Id.
213 Id.
214 Id.
\end{flushleft}
As the population in Florida continues to grow, demand for both water and energy increases.215 However, beyond the issue of continued population growth, climate change will confront Florida with an uncertain water future—there will either be more or less rain. However, either way, water patterns in Florida will change, which will have to be accounted for in the allocation and distribution of water.

This Paper proposes a coordinated scientific investigative and planning program in which the WMDs, the DEP, and the PSC would take part with the ultimate goal of coming together for a unified picture of water and energy resources. This assessment could then be used to form a plan to address increased demands on both water and energy, which would prepare the state for challenges related to climate change.

\textit{A. Timeframe of Water Resource Planning}

All natural resource management addresses resources and needs within certain timeframes. The present issue asks how much water and power Florida’s population will require over the next twenty, forty, or even hundred years. Projections are limited by several factors; first and most important is the ability to accurately model for future population growth, technological advances, and overall need.216 Second is the expected lifetime

215 See DCA OVERVIEW, \textit{supra} note 13, at 15 (noting the increased need for water supplies); DOE FLORIDA FACTSHEET, \textit{supra} note 13 (noting the relation between population growth and future energy demand, also noting goals for reduction in per capita energy consumption).

of the infrastructure that the agency is approving, which must be taken into account.217 For instance, the timeframe for aquifer and wetland restoration varies based on the local water resources available, and CUPs are issued for periods of up to twenty years.218 On the other hand, power plants have limited lifetimes which are determined by the age of the technology and, in some cases, regulatory frameworks.219 For example, the Nuclear Regulatory Commission licenses nuclear power plants for forty years, at the end of which the plant may apply a new permit.220

The relevant agencies would have a substantially more informed permitting process if each one evaluated the timelines of water management and energy production projects together. For instance, if a WMD was anticipating a water shortage from a particular body of water within the next thirty years, then that projected shortage should induce the PSC to be less willing to approve a power plant at that location knowing that the WMD may ultimately resist future CUPs for the power plant. Or in more exigent circumstances, climate change may cause an area to become much more arid during the first CUP period, which would threaten the water body and the power plant’s operation, which is similar to the issues facing the Duke

220 Id.
facilities on the Catawba River. Currently, the power plant bears the risk that the WMD will not grant the CUP or that the water will not be there. While communication on anticipated timelines will not produce more water, it will help inform water and energy decisions, meaning that all interested parties will be more prepared to cope with future changes in the resources.

B. Cooperative Scientific Research and Reporting

The DEP, the WMDs, and the PSC all have specialized knowledge regarding the respective areas they regulate. However, each institution has particular goals that the state has put in place. The DEP and the WMDs are focused on ensuring that Floridians have a supply of water, as well as ensuring that water use does as little damage to the environment as possible. The PSC, in turn, is committed to ensuring that sufficient electricity is available to Floridians at reasonable rates. While these are divergent goals, they converge at many points, as is illustrated above. Regular exchange of expert opinions between the respective agencies would foster more knowledgeable decisions and planning processes amongst both agencies.

221 Stabley, supra note 199.
222 See The South Florida Water Management District, Basis of Review for Water Use Permit Applications Within the South Florida Water Management District, 2-3 (Mar. 18, 2010) http://www.sfwmd.gov/portal/page/portal/xrepository/sfwmd_repository_pdf/bor_wu.pdf (noting that “[a]pplicants for projects that are to be developed in phases should consider their water needs for all phases of the proposed project. However, the District evaluates permit applications based on the demonstrated need of water for the project only through the recommended duration of the permit . . . ”).
223 See Water Management Districts, supra note 148.
Increasing the interaction between these agencies might ultimately result in less agency expense to do initial studies for future planning. Much of the raw data that these agencies must address is the same because each has regulatory duties that are affected by water resources. Even if the specific focus of the inquiries may be slightly different, the agencies would benefit from sharing the information. Coordinated study plans and goals would likely result in a more complete picture of water supply and energy needs for each agency; they would also utilize combined resources to achieve desirable end results. The U.S. Department of Energy has specifically noted:

Mechanisms, such as regional natural resources planning groups, are needed to foster collaboration between stakeholders and regional and state water and energy planning, management, and regulatory groups and agencies. These types of collaborative efforts are needed to ensure proper evaluation and valuation of water resources for all needs, including energy development and generation.

Moreover, such coordination may result in less expense for private industries that have an interest in water and energy resources, because there would be a single repository of data upon which these agencies would base their decisions. Ultimately, it would require less expense of private resources to become familiar with the data, and there would be fewer areas of potential conflict. Ultimately, the unified information would produce a greater likelihood of anticipating agency action.

225 See supra Parts IV.A, IV.B.
226 ENERGY DEMANDS ON WATER RESOURCES, supra note 16, at 49.
If all agencies with a hand in managing the same resources were involved in the investigatory process, conflict will likely diminish. Moreover, all of these agencies will be looking at the same data and will be more familiar with the likely activity of the other agencies, resulting in better planning.

C. Applying Florida’s Existing Land Use Planning Linkage to Water Policy to Energy Development

Florida has already established mechanisms to coordinate land use planning and water resource management, and some of these can be adapted for combined water-energy planning. Many of the land use mechanisms focus on the development of state and local comprehensive plans. This is a planning (rather than a permitting) exercise, which may not fit well with the FEPPSA and CUPs, because these are both permitting programs. However, power companies engage in power plant site planning, which provides a planning program to which agencies can adapt land use mechanisms.

While PSC is responsible for permitting power plants, the power plant developers engage in their own mandated planning process. Utilities submit ten-year plans to the PSC based on historical and future energy

227 O’Brien & Markham, supra note 182, at 5-7.
228 Id.
229 See Angelo, supra note 192, at 232.
230 See supra Parts IV.A, IV.B.
consumption rates, projecting if and where future power plants will be required. However, these plans do not substantively address future water consumption and available resources related to the plants. Florida Power & Light (FPL), for example, does mention water resources several times in its 2010 site plan, but the references are very basic – even cursory descriptions of the water use by the plants. The plan does not include an overall impact on the local water resources.

Power plant developers are mandated to produce the plans, and the PSC is mandated to review and classify the plans as suitable or unsuitable based on multiple criteria. Thus, the PSC already has planning authority; moreover, one of the criteria for review is the views of “local, state, and federal agencies, including the views of the appropriate water management district as to the availability of water and its recommendation as to the use by the proposed plant of salt water or fresh water for cooling purposes.” However, the concerns of the WMDs appear to play a relatively minor role in the overall process of site approval. The power plant developers are not

235 See id. at 123, 130, 137, 143, 147.
236 Fla. Stat. § 186.801.
237 Id.
mandated to address water resource issues;239 moreover, they do not readily have access to data, nor a program to assess the impact of future power plants on water resources in the state, basin, or even local level.

Current land use planning mechanisms addressing water concerns can supply a model for improving the coordination of energy and water planning mechanisms. Water resources benefit from having water managers – the WMDs – contribute input directly to land use planning.240 This model can be applied to a water-energy planning context by mandating that the WMDs create a water-energy plan accessible to the public, and by mandating that power plant developers review the plan and provide a comment section addressing the implications of their proposed power plant siting. Having power plant developers review and comment on the WMD’s water-energy plan and develop their site development plan accordingly would front-load review of water resource concerns, rather than back-load it by having WMDs comment only after the plans have been reviewed by the PSC.241

Furthermore, the review process would highlight the long-term concerns of water planners, giving developers a better understanding of the water resources available for future power plants.

\textit{D. Lessons from the West: Assured Water Supply Requirements}

In addition to direct agency coordination, power plant developers should also take an active role in planning for future water availability for

239 See Fla. Stat. § 186.801.
240 See supra Part IV.C.
241 See Fla. Stat. § 186.801(2).
plants that they plan to construct. To this end, the developers should play a greater role in the planning process through assured water supply requirements.242 While the ten-year planning mandate discussed above243 can be modified for a water-energy planning system based on land use mechanisms, it could not be adapted to assured water supply requirements. Assured supply requirements apply to actual developments, not a long-range plan of potential development.244 Assured supply requirements focus on permitting, rather than planning, but they do take a long-view of water supply.245 Thus, a permitting program would be better suited for implementation of an assured water supply program. For the WMDs, the appropriate program would be CUPs; for the PSC, it would be certificates of need determinations.246

The mechanics of assured water supply requirements for land use development are fairly simple. The laws require the developer to prove that it has an adequate water supply before the agency will approve the development.247 However, as simple as this mandate may appear, many complexities follow from it.248 Some of these complexities arise as a result of various definitions and interpretations of the statutory terms employed, such

\begin{itemize}
\item 242 See Davies, \textit{Hot Fuss, supra} note 173, at 1249.
\item 243 Fla. Stat. § 186.801 (Year).
\item 244 Davies, \textit{Hot Fuss, supra} note 173, at 1249.
\item 245 \textit{Id.} at 1248.
\item 246 Fla. Stat. § 403.519 (Year); see, e.g., \textsc{Florida Public Service Commission, Certificate of Need Determination for New Plants in Florida} (May, 2005) http://www.gru.com/Pdf/futurePower/PSCNeedCertification.pdf
\item 247 Lincoln L. Davies, \textit{Assured Water Supply Laws in the Sustainability Context}, 4 \textsc{Golden Gate U. Envtl. L.J.} 167, 173 (2010).
\item 248 \textit{Id.} at 174.
\end{itemize}
as “assured” and “adequate.” Moreover, there are problems related to what constitutes proof under these schemes. For instance, there are open questions as to whether a water provider’s guarantee that the water will be available is sufficient, or whether the developer must engage in a more in-depth scientific analysis and provide future water use projections. While these laws face difficulty and vary in their success based on the minutia of their implementation, they can ultimately succeed in achieving their goals of protecting consumers, achieving holistic planning, and protecting the environment. The same benefits can be brought to the development of energy resources in Florida.

Because FEPPSA and the FWRA both require the PSC to be wholly responsible for power plant siting, the PSC is the agency best suited to ensure that water assurance requirements are met. However, the WMDs responsible for authorizing CUPs would be the agency responsible for authorizing the actual water withdrawal for the power plant. Implementing assured supply laws would require WMDs to look beyond the relatively basic statutory criteria of public need currently set out for CUPs and require them to have a mechanism through which they can address future water

249 Compare Cal. Gov't Code § 66473.7(a)(2) and Wash. Rev. Code § 19.27.097(1); See Davies, Hot Fuss, supra note 174, at 1279-91.
250 Davies, Assured Water Supply, supra note 245 at 174.
251 Id.
252 Davies, Hot Fuss, supra note 174, at 1230-46.
253 Fla. Stat. § 403.519 (stating that the PSC has the exclusive authority to determination of need for a new power plant); Fla. Stat. § 373.217(3) (stating that the FWRA does not supersede the FEPPSA).
254 Fla. Stat. 373.223(1).
255 The consumptive use must be of “reasonable-beneficial use” as statutorily defined; “not interfere with any presently existing legal use water”; and “consistent with the public interest.” Fla. Stat. § 373.223(1).
resources at specific locations. Moreover, directly involving water resource managers in a forward-looking authorization process would likely help Florida to avoid situations such as the Maryland nuclear power plant or the Catawba River power facilities.²⁵⁶

E. Climate Change and Implementing Coordination

As climate change progresses, water supplies in Florida will inevitably change.²⁵⁷ Depending on whether the Hadley model or the Canadian model is correct, Florida will either see an increase or decrease in precipitation.²⁵⁸ Along with this alteration in climate will come more drastic weather patterns, likely including stronger storms and stronger droughts.²⁵⁹ As was illustrated by the Catawba River power facilities, droughts can have devastating effects on a power plant’s ability to operate. Without the water, the plants must reduce production or shut down.²⁶⁰ To make up for the closed power plants, other, typically more expensive methods of power generation, lead to spikes in power prices and potentially to power rationing and losses.²⁶¹

Climate change is a slow process, thus coordinated planning between water resource management and power plant siting would have time to

²⁵⁶ See supra Part V.
²⁵⁷ See supra Part II.B.
²⁵⁸ GLOBAL CHANGE SOUTHEAST OVERVIEW, supra note 22.
adapt to alterations in climate. Measures such as coordinated time frames and combined research would lead to a more complete picture for the parties involved in power and water decisions. More extreme droughts and storms are expected to come from alterations in the climate.262 If extreme droughts, like those in 2007 that affected power plants,263 begin to occur in Florida, the power industry and Floridians will likely feel a direct effect from climate change and the water-energy issues. Therefore, the state should begin planning for these potential effects on both energy and water.

Furthermore, sea level rise, which is caused by climate change, is already a concern for power plants in Florida and around the world.264 In Florida, for example, FPL has proposed to build two additional nuclear power reactors at the Turkey Point Power Plant in southern Florida.265 However, there is already vocal opposition asserting that FPL did not sufficiently consider the impact of sea level rise on operations and safety at the facility.266 In other parts of the world, the same concerns are being echoed.267 In India, for example, the India Institute of Technology, Madras, conducted a study which focused on the Kalpakkam nuclear power plant,
which concluded that without long-range planning, India would be faced with extensive costs of mitigating rising sea levels or potentially replacing power plants.268 Climate change problems, as they relate to power plant siting, are becoming more apparent in Florida and around the world.

Combined timeline approaches and cooperative studies would give energy companies, agencies, and the public a better understanding of the potential future effects of climate change and how it will affect power development in Florida. If agencies and developers have a broader picture of the current and future states of water resources and energy development, that information can be used to create an informed planning system that incorporates mechanisms that Florida already employs in land use planning as well as more novel schemes, such as assured supply requirements.

\textbf{CONCLUSION}

Floridians, who once saw water as a problematic part of nature to be tamed, are now facing the consequences of earlier water management decision. The state must now plan for population increases and the uncertainty of climate change.269 As such, the parties responsible for planning and managing water and power should work in a more integrated fashion to ensure the most efficient allocation of resources. States and the federal government are increasingly recognizing the critical intersection of

\begin{footnotesize}
268 \emph{Id.}
269 See supra Part II.
\end{footnotesize}
water and energy policy and that a lack of energy-water coordination can have substantial effects on water resources and on the availability of electricity. The time to set up the cooperative structures between the WMDs, the DEP, and the PSC is now, so agencies can form a clearer picture of the water-energy relationships and so they can cooperatively plan for the future.