THE EFFECT OF ECONOMIC CRISSES ON PATENTING ACTIVITY ACROSS COUNTRIES

DANIEL BENOLIEL* & MICHAEL GISHBOLINER**

ABSTRACT

This article offers a conceptual and empirical contribution regarding the effect of economic crises on patenting activity across countries. It does so in the midst of the predominant general view that economic crises flatly chill patenting activity for all countries alike.

Financial crisis literature commonly assumes that, during global financial crises, private enterprises consequently tend to retreat to the safety of their domestic markets. These enterprises presumably react this way because of the lesser familiarity of foreign markets, the currency risks involved in international investment, and the uncertainties regarding the issue of how states will treat foreign assets.

This article acknowledges the idiosyncrasies underlying advanced and emerging economies abridging the archetypical North-South divide while rendering separate patenting patterns in particular. It offers a quantitative statistical methodology for the evaluation of the influence of economic crises on patenting activity. The article’s main finding shows that when analyzing patent application rates by proxy of applicants’ national origin (or shortly, ‘by origin’) applications, the influence of economic crises modeled through independent economic variables is much weaker over emerging economies than over advanced economies. Consequently, when the economic variables’ values rise, the probability of the negative change in patent applications count falls. Surely this decline is much steeper for advanced economies than for emerging ones.

The analysis possibly corroborates that in emerging economies, where innovation is predominantly promoted by overseas multinational corporations (MNEs) and foreign direct investments (FDI), patenting activity-related decisions come from outside the country and relatively less as a response to economic developments within the country.
INTRODUCTION

Economic crises have acutely disturbed normal functions of financial and monetary systems all throughout history. While economists diverge over the role of the financial sector in economic growth, there is general agreement that economic crises diminish short-term growth. An economic crisis surely is marked by the often unexpected failure of banks, the sharp decrease in credit and trade, or the collapse of an exchange rate regime that diminishes the efficiency of a given economy. Less is understood, however, about the exact impact of eco-

* Associate Professor, The University of Haifa Faculty of Law and member of the Haifa Center of Law and Technology (HCLT). This Article was presented in workshops at the Israeli Intellectual Property Academic Forum and at the University of Haifa Faculty of Law research forum in 2014–2015. We wish to thank Alan Miller, Michal Gal, Dan Peled, Benjamin Bental and the participants of both fora. We thank Dr. Nitza Barkan for the statistical assistance. All disclaimers apply.

Economic crises at large, as well as the 2001 dot-com and 2008 subprime crises, on economic growth. Arguably less is known about the exact relation between economic crises and patenting activity, and their measure as a proxy of such economic growth, regardless whether or not the measured economic growth is innovation-based.

Given the traditional flow of economic crisis theory, surely any comparison between the advanced and emerging economies abridging the North-South divide may seem to indistinctly connote a decline in patenting activity due to economic crises. A closer look, however, reveals a more subtle reality across the development divide. While the 2008 crisis might be telling on how emerging economies similarly stand for a lesser decline on growth or possibly funneled through patent activity rates, a more principled analysis of the effect of economic crises on patenting activity is judicious.

Part I presents the topic’s theoretical setting. It accounts for both economic crisis theory and patent law-related literature, which frame the discussion. Part II presents the article’s empirical analysis for 1997–2012 with emphasis on the two global crisis years of 2001 and 2008. These two years refer to the dot-com and the subprime crises, respectively, which will be analyzed as to their effect on patenting filling trends across developed and advanced countries. This part offers a quantitative statistical methodology of the potential North-South discrepancies thereof. It is a logistic regression (logit) model for dichotomous outcome variables. This model connects a probability of the negative change in patent applications count (outcome or dependent variable) with a linear combination of income or independent variables, including country type, and economic variables and their interac-

4. Logistic regression accounts for the link between an independent variable and a categorical dependent variable. It is usually continuous, by using probability scores as the predicted values of the dependent variable. See, Glossary of Statistical Terms, STATISTICS.COM, http://www.statistics.com/index.php?page=glossary&term_id=391.
Economic crises have been traditionally modeled as cyclical, periodically appearing and at times erupting in downturned markets. Economic crisis theory originally evolved along the clash between the two theoretical traditions of liberal economic theories of Hayek, inspired by the Austrian School led by Ludwig von Mises and the Keynesian post-1930s Great Depression state interventionist economics. That also explains why theories of economic crises are often assumed to intertwine with business-cycle taxonomies modeling of periodic economic crises originated by Norwegian Economics Nobel Prize winner Ragnar Frisch, followed by Austrian-American economist Gottfried Haberler and leading business cycles scholar Victor Zarnowitz. Notwithstanding the theoretical intricacies between financial crises and business cycle theories, financial crises clearly erupt within countries but also oftentimes across countries.

I. THE NORMATIVE FRAMEWORK

A. Economic Crises across the North-South Divide

Economic crises have been traditionally modeled as cyclical, periodically appearing and at times erupting in downturned markets. Economic crisis theory originally evolved along the clash between the two theoretical traditions of liberal economic theories of Hayek, inspired by the Austrian School led by Ludwig von Mises and the Keynesian post-1930s Great Depression state interventionist economics. That also explains why theories of economic crises are often assumed to intertwine with business-cycle taxonomies modeling of periodic economic crises originated by Norwegian Economics Nobel Prize winner Ragnar Frisch, followed by Austrian-American economist Gottfried Haberler and leading business cycles scholar Victor Zarnowitz. Notwithstanding the theoretical intricacies between financial crises and business cycle theories, financial crises clearly erupt within countries but also oftentimes across countries.

5. For a seminal depiction of these two theoretical traditions, see NichoLas Wapshott, KEYNES HAYEK: THE CLASH THAT DEFINED MODERN ECONOMICS (2011). Wapshott argues that while state interventionist theories of Keynes appeared to be correct so as to delay the Second World War in Europe, the liberal theories of Hayek appear to be gaining favor nowadays. See also, BERNAKE & GERTLER, supra note 3, at 3 (Economic crises occur periodically in different countries, constituting a downturn phase of real business cycle.).

10. Spotton & Rowley, supra note 6 ("We are compelled to settle for much less than a comprehensive taxonomy, offering some distinctive strands of comparison of alternative theories….").
Although economic crisis theory traditionally modeled the western hemisphere economies, surely not all major crises erupt in these countries. All six major international economic crises during the 1990s started in developing countries. These began in Mexico in 1995; Thailand, Indonesia, and South Korea in 1997–1998; Russia in 1998; and Brazil in 1998–1999. The economic crises later occurring in International Monetary Fund (IMF)-labeled thirty-two advanced economies represent a broad range of events with Japan's 1992 national crisis starting an emblem "lost decade." It being yet another developing country's economic crisis, it ultimately expanded into a developed country, namely the U.S. mid-1980s crisis.

Since the 1960s, global political economy of private capital has grown to a volume where they now dwarf international trade flows, periodically leading to global economic crises. Thus, even aside from archetypal local national crises associated with major declines in economic performance, global crises can often erupt. The two chief global crises starting in developed or advanced economies are the 2001–2002 dot-com global crisis and the 2008 subprime crisis, each of

14. See, THE FIN. CRISIS INQUIRY COMM’N, THE FINANCIAL CRISIS INQUIRY REPORT: FINAL REPORT OF THE NATIONAL COMMISSION ON THE CAUSES OF THE FINANCIAL AND ECONOMIC CRISIS IN THE UNITED STATES, xvi–xvii (2011) (hereinafter, "The U.S. Financial Crisis Report") ("The changes in the past three decades alone have been remarkable…. Technology has transformed the efficiency, speed, and complexity of financial instruments and transactions. There is broader access to and lower costs of financing than ever before."). See also, Helleiner, supra note 13, at 331 (detailing key political developments to explain the reemergence of current global finance). Helleiner further emphasizes that “the key role of states was that of either liberalizing capital controls or refraining from tightening them." Id.
15. REINHART & ROGOFF, supra note 12.
which equally serve as a case in point. Regardless of each crisis' intricacies, the historical record surely finds striking qualitative and quantitative equivalents across a number of standard financial indicators.

In continuation, the relation between economic crises and patenting activity works essentially twofold. At a start, optimal patenting activity accelerates economic growth. In a prominent book titled *Innovation and Its Discontents: How Our Broken Patent System is Endangering Innovation and Progress, and What to Do About It*, economists Adam Jaffe and Josh Lerner argue that suboptimal patenting activity may ultimately reduce economic growth altogether. In balance, given economic crisis conditions, the value of patents as competitive assets may increase the likelihood of firm survival. As a whole, suboptimal patenting activity presumably catalyzes economic crises.

The relation between economic crises and patenting activity has a second highly significant effect. The latter, which is also the focal point of this article, is that economic crises may reduce patenting activity while at times reducing innovation-based growth altogether. This line of thought indeed may seem to flow naturally at first sight; financial crisis literature has conventionally assumed that during international financial crises international market players consequently tend to retreat to the safety of domestic markets. The explanations herein are

17. See, *The U.S. Financial Crisis Report*. The report was prepared by the Financial Crisis Inquiry Commission (FCIC), which is a ten-member commission appointed by the United States government for investigating the causes of the financial crisis of 2007–2010. The U.S. Financial Crisis Report, confirms “it was the collapse of the housing bubble—fueled by low interest rates, easy and available credit, scant regulation, and toxic mortgages—that was the spark that ignited a string of events, which led to a full-blown crisis in the fall of 2008.” *Id.* at xvi. The U.S. Financial Crisis Report confirms “[t]his happened not just in the United States but around the world.” *Id.* To be sure, Section 5 of the Fraud Enforcement and Recovery Act of 2009, signed into law by President Barack Obama on May 20, 2009, established the FCIC “to examine the causes, domestic and global, of the current financial and economic crisis in the United States.” *Id.* at xi.

18. See, e.g., REINHART & ROGOFF, supra note 12. Reinharst and Rogoff further add: “Starting in the summer of 2007, the United States experienced a striking contraction in wealth, increase in risk spreads, and deterioration in credit market functioning.”

20. See, Iain M. Cockburn & Stefan Wagner, *Patents and the Survival of Internet-Related IPOs* (NBER Working Paper No. 13146, 2007), available at http://www.nber.org/papers/w13146.pdf (analyzing a sample of 356 newly-listed firms at NASDAQ while concluding that firms were unable or unwilling to seek patent protection were much less likely to survive the collapse of the dot-com bubble after 2001). Cockburn and Wagner further conclude that firms with patent applications had a much higher hazard of exiting the sample. *Id.* at 22.

21. Jaffe & Lerner, supra note 19, at 150 (“[T]here is a ‘crisis in the quality of issued patents’ and further extrapolates this crisis to also be a ‘potential economic crisis’ as intellectual property has increased in economic significance.”). But see, William L. LaFuze, *Keeping Current with the Chair*, 2 INTELL. PROP. L. NEWSL. 2, 4 (2005) (criticizing Jaffe & Lerner’s conclusion, whereby: “The logic employed by the authors in reaching such a dramatic end point appears to be a giant leap without substantial foundation.”).
again intuitive, given the familiarity of such financial operators or multinational enterprises operating in foreign markets, the currency risks involved in international investment, or uncertainties regarding the issue of how states will treat foreign assets.22 A similar account is found also within business cycle scholarship. Economist Antonio Fatás noticeably has argued that economic output fluctuations constituting business cycles, such as economic crises, may affect long-term growth, noting that this influence is expected to be stronger for less-developed countries.23 There is respectively also increasing theoretical literature that places capital market imperfections at the core of national or regional crises in emerging market.24 The impact of such economic crises on the twenty-five IMF’s-labeled emerging economies is said to be similarly stronger in comparison with crises hitting advanced economies at first.25

Given the traditional flow of economic crisis theory, surely any comparison between advanced and emerging economies abridging the North-South divide may seem to indistinctly connote a decline in patenting activity due to economic crises. The World Intellectual Property Indicators report for 2010 published by the World Intellectual Property organization (WIPO) reveals that most reviewed countries indeed experienced a slowdown in patent applications in the 2008 crisis.26 Countries worldwide similarly witnessed a decrease in the numbers of patent applications filed in 2009.27 These transformations were measured by both national and regional patent application

22. See, e.g., Mark Aguiar & Gita Gopinath, Fire-Sale Foreign Direct Investment and Liquidity Crises, 87 THE REV. OF ECON. AND STATISTICS, 439, 439 (2005) (associating liquidity crises with low foreign investment and an exit of investors from crisis economies); Helleiner, supra note 13, at 331 (using the case of the 1930 international financial crisis as a case in point).
27. Id.
rations. They were particularly witnessed by Patent Cooperation Treaty (PCT) agreement application rates, where for the first recorded time the number of applications filed through the PCT System dramatically declined compared to the previous year.

A closer look however reveals a more complex and subtle reality across countries. The 2008 crisis in fact bears witness to the fact that the advanced economies saw actual declines in growth output in 2009 of an average of 3.2%. In an intriguing comparison, however, the emerging economies were substantively less affected. Their growth output in fact grew in 2009, yet at a much slower pace compared to previous years. Their growth rate was on average 2.5% in 2009 compared to 6.1% in 2008 and 8.3% in 2007. While the 2008 crisis might be telling on how emerging economies similarly stand for a lesser decline on growth or possibly funneled through patent activity rates, a more principled analysis of effect of economic crises on patenting activity became timely.

B. Patenting Activity and Economic Crises

Economic crises largely affect patenting prosecution and litigation fivefold. Economic crises surely carry such effect notwithstanding the discrepancies over the decline rates in patenting activity across the archetypical development divide when economic crises occur.

First and foremost, the decline in patent application rates due to the 2008 crisis presumably increased relative patenting litigation costs. This was funneled by a surge in the willingness to sue competitors. In such conditions, a consolidation of patent portfolios may take

28. Id.
29. Id. at 8 (“At the height of the economic crisis in 2009, applications filed through the Patent Cooperation Treaty (PCT) dropped by 4.5%, the first drop since the inception of the PCT System”). The WIPO report adds that PCT applications from the United States who is the largest user of the PCT System, dropped by 10.8% in 2009. Id. at 51.
30. Id. at 51.
31. Id. at 14. (explaining that the actual declines in output in IP systems in Advanced economies in 2009 were most pronounced for European countries (for example, around -5% for Germany and the United Kingdom) and for Japan (around -5%).)
32. Id. (adding that “This was mainly due to continued growth in developing Asia (notably China, India and Indonesia), but also growth in Africa that compensated for declines elsewhere”).
34. For the European context, see, e.g., Emmanuel Baud Andreas, Ebert-Weidenfeller Dorothy, Weber-Brull, Stefano Macchi di Cellere, Alastair McCulloch, IP CLIENT STRATEGIES IN EUROPE, 2010 EDITION LEADING LAWYERS ON ANALYZING EMERGING IP TRENDS, BUILDING CLIENT RELATIONSHIPS, AND NAVIGATING EUROPEAN IP LAWS AND LEGAL SYSTEMS IP STRATEGY IN A PAN-EUROPEAN ENVIRONMENT, 2010 WL 3628954 at *1 (2010) (indicating that in the backdrop of the 2008 economic crisis companies operating in Europe are now checking their intellectual property as the willingness to sue competitors has grown).
place. This on the one hand, leads to fewer patent applications being filed, and conversely to more legal disputes on patent applications already filed.

The European context serves a first prime illustration. For Europe, the 2008 global economic crisis has apparently led numerous industries to reduce their R&D budgets and expenditures for the application and maintenance of intellectual property rights (IPRs). That is, as the number of both patent and trademark applications decreased. Similarly, within the South-East Asian context, as in the case of Thailand, evidence shows that litigants further seem to signal high rates of selectiveness as they become increasingly mindful about obtaining the most cost-effective IPR strategies including patenting-related ones. In Taiwan, moreover, there were 78,425 patent applications in 2009, while there were 83,613 in the global crisis year of 2008. The growth rate for patent applications in 2009 thus decreased about 6.2 percent from 2008, which is the first negative growth rate since 2002. Lastly, in the case of China’s State Intellectual Property Office (SIPO), the global economic crisis has similarly decreased patent applications at large.

Importantly, further investigation per the South-East Asian case possibly

35. Id.
36. Id.; For the U.S. and European contexts, see e.g., Philip P. Soo, Enforcing a Unitary Patent in Europe: What the U.S. Federal Courts and Community Design Courts Teach Us, 35 Loy. L.A. INT’L & COMP. L. REV. 55, 96 (2012) (adding that the recent global economic crisis underscores the need for reducing litigation costs and further justifies a unified European patent system).
37. Id.; See, also, MANUEL LOBASHO, NAVIGATING INTELLECTUAL PROPERTY LAW IN EUROPE LEADING LAYERS ON COMPLYING WITH REGIONAL LAWS, LEVERAGE NEW TECHNOLOGY, AND AVOIDING INFRINGEMENT ISSUES RECENT CASES IN SPAN: A GENERAL FRAMEWORK OF IP LITIGATION, 2011 WL 5618008 at *4 (2011) (Focusing on the Spanish case: “[t]he decrease in patent applications (a notable feature of the Spanish economic crisis) is due to lack of research, but not to decisions to avoid patent expenditure”).
38. Id.
39. For the South-East Asian context, see, PETER J. DERNBACH, IP CLIENT LAWYERS ON DEVELOPING A DEFENSE STRATEGY, NAVIGATING RECENT CHANGES IN IP PROTECTION, AND UNDERSTANDING THE IMPACT OF THE ECONOMIC CRISIS ON IP CLIENTS’ IP TRENDS AND NEEDS IN TAIWAN, 2010 WL 2511572 at *3 (2010) (emphasizing that there certain types of demand inelasticity over relevant IPRs i.e., filings of patents before there is public disclosure of an invention; ongoing trademark and copyright issues and lawsuits regardless of the overall economic crisis). Dernbach broadly concludes that in due to the economic crisis: “all of our clients have become very selective and mindful about obtaining the most cost-effective IP strategies.” Id.
41. Id.
reveals that this trend was mainly caused by the decline of applications filed by foreign entities. It is presently unclear what explains the decrease in patent applications, whether it either lack of research, or the overall avoidance of patent expenditure consistently world-
wide.48 The empirical data on this account in still overly general and incomplete.

Moreover, for some developing countries the 2008 global economic crisis seemingly did not take down domestic patent applications counts.49 On the other hand, foreign patent and trademark applications have experienced decreases as shown during the same period.50

Economic crises impact patenting activity in a second way. Economic crises may reduce patent filling expenditures while hindering quality patenting.51 There are numerous accounts of a demand increase for patent prosecution discounts over patent filing fees.52 Similarly, there is worldwide evidence of savings over cheaper patent drafters.53

Such changes raise new concerns about the quality of the patent protection, especially in terms of patent registrations.54 To illustrate, in the context of the 2008 crisis, the European Union (EU) accordingly urged its member states to reduce fees for patent applications and maintenance by up to 75\%.55 Furthermore, the European Commission adopted in 2009 a recommendation to the Council that would provide the Commission with negotiating directives for the conclusion of an agreement creating a Unified Patent Litigation System (UPLS).56 Such a reduction in legal costs could permit many Small and Medium Enterprises (SMEs) to enforce their patent rights in all EU and European Patent Convention (EPC) countries.57 In the same vein, in an output of

48 MANUEL LOBATO, NAVIGATING INTELLECTUAL PROPERTY LAW IN EUROPE LEADING LAWYERS ON COMPLYING WITH REGIONAL LAWS, LEVERAGING NEW TECHNOLOGY, AND AVOIDING INFRINGEMENT ISSUES RECENT CASES IN SPAIN: A GENERAL FRAMEWORK OF IP LITIGATION, 2011 WL 5618008 at *4 (2011).

49 See, e.g., YEAP LIN, IP CLIENT STRATEGIES IN ASIA, 2010 EDITION LEADING LAWYERS ON DEVELOPING A DEFENSE STRATEGY, NAVIGATING RECENT CHANGES IN IP PROTECTION, AND UNDERSTANDING THE IMPACT OF THE ECONOMIC CRISIS ON IP CLIENT MEETING IP CHALLENGES IN MALAYSIA, 2010 WL 2511569 at *2 (2010) (adding that the number of domestic patent and trademark applications have in fact increased over the year 2009).

50 Id.

52 Id. ("After the economic crisis, we noticed that many of our clients tried to reduce their patent filing costs. Many clients now demand very strong discounts for filing fees, or they try to change their IP counselors in order to hire cheaper agents.").

53 Id.

54 Id.

56 Id.

57 Id.
invited readers by the IP Review magazine in 2009, titled *State of the IP Industry Survey 2009*,58 most American law firms said clients were similarly reporting a reduction in budgets for acquiring and developing intellectual property.59 Patent attorneys were consequently said to process fewer foreign filings and clients focused more on selling or licensing intellectual property than on acquiring or litigating intellectual property.60 More than a third of the companies surveyed stated that they would spend less specifically in patent and trademark protection.61 In the backdrop of the 2008 crisis, clients significantly have said to put work ‘on hold’ or to prioritize out-licensing or divestiture over acquisition.62 European and American evidence of an overall reduction in patent filling expenditures still fall short in accounting for the more subtle and complex trends abridging the north-south divide.

Third, the effect of economic crises over patenting activity embeds an institutional corollary. It possibly underscores the need for patent courts to encourage innovation and reduce litigation costs.63 The current economic crisis thus possibly may accentuate the need for a unitary patent and an integrated patent court to encourage innovation and investment.64 Fourth and in continuation, economic crises allegedly increases suboptimal patent settlements and reduce court case decision-making accordingly. Due to the 2008 crisis, presumably more settlements over intellectual property occurred.65 This is particularly so given the high litigation costs over IPRs and particularly litigation over patents.66 Fifth and lastly, economic crisis reduces the bargaining power of developing countries over intellectual property-related goods.67 To illustrate, in view of major national economic crises deve-

59. Id. at 4-5.
60. Id.
61. Id.
62. Id.
64. Id.
65. STANLEY M. GIBSON, LITIGATION STRATEGIES FOR INTELLECTUAL PROPERTY CASES LEADING LAWYERS ON ADAPTING TO NEW TRENDS, IMPROVING COURTROOM TACTICS, AND UNDERSTANDING THE IMPACT OF RECENT DECISIONS FROM THE TRENCHES OF IP LITIGATION, 2010 WL 1535545 at 4* (2010) (“I think we are seeing more settlements in the IP area because of the current global economic crisis, primarily because IP litigation is very expensive, particularly patent litigation.”).
66. Id.
opposing country leaders such as India, Argentina, or Thailand finally succumbed to U.S.-led pressure and signed the WTO-led 1994 Trade Related Aspect of Intellectual Property (TRIPS) agreement. Professor Samuel Oddi elegantly labeled it a “polite form of economic imperialism”. Instead of introducing rule of law in the transnational space we are told, the WTO has repeatedly become an instrument of U.S.-led unilaterism.

II. THE MODEL

A. Overview

This part offers a quantitative statistical methodology of the potential north-south discrepancies over the impact of economic crises over patenting activity. It is a logistic regression (logit) model for dichotomous outcome variables. This model connects a probability of

Tier-1 sanctions, such developing countries may be sanctioned by the governments of developed countries; and in what are Tier-2 sanctions, they may be sanctioned by the industry as well. This dual sanction cost structure is in reality the main way in which the post-WTO intellectual property framework may be said to have generally reduced the bargaining power of developing countries): Samuel Oddi, Nature and Scope of the Agreement TRIPS - Natural Rights and a "Polite Form of Economic Imperialism", 29 Vand. J. Transnat'L L. 415, 426 (1996).

69. For the case of Argentina, see also, Daya Shanker, Argentine-US Mutually Agreed Solution, Economic Crisis in Argentina and Failure of the WTO Dispute Settlement System, 44 ID.EA 565, 615 (2004) (explaining how the Argentinean economic crisis and subsequent development have led to Argentina accepting terms in violation of the TRIPS Agreement after resisting even minor adjustments in its patent law for years).

70. See, Rosemary Sweeney, The U.S. Push for Worldwide Patent Protection for Drugs Meets the AIDS Crisis in Thailand: A Devastating Collision, 9 PAC. RIM L. & POL’Y J. 445, 462 (2000) (“In 1997, Thailand suffered a severe economic crisis that placed it in a weak position to resist U.S. attempts to dictate changes in its intellectual property laws…Thai government officials expressed hopes during this period that Thailand could finally be removed from the USTR watch list so that more of its exports could enjoy the benefits of the GSP.”) ("U.S. pressure has resulted in amendments to the Thai Patent Act that have cut off the possibility of parallel importing to obtain less expensive, generic versions of these drugs and narrowed the situation in which compulsory licenses can be issued to produce generic versions of AIDS drugs locally") Id. at 463.

72. Id.

73. Logistic regression measures the relationship between a categorical dependent variable and one or more independent variables, which are usually (but not necessarily) continuous, by
the negative change in patent applications count (outcome or dependent variable) with a linear combination of income or independent variables, including country type, economic variables and their interactions. The analysis first accounts for an annual time series of 1997-2012 at large, but then corroborates its main findings per the global crisis years of 2001 and 2008.

B. Methodology

The empirical analysis herein examines the effect of different independent variables as proxy of economic crises on dependent patent application procedures across countries. There are three such independent variables. Firstly, these are countries by country group classification, namely countries belonging to the thirty-two advanced economies or twenty-four emerging economies. Secondly, the article’s independent variables include a set of three economic variables, namely Gross Domestic Product (GDP), Gross national Income (GNI), both at Purchasing Power Parity (PPP) and Gross Domestic Expenditure on Research and Development (GERD). GDP and GNI-PPP annual change data are available at World Bank whereas GERD annual time series are available by the OECD. It further examines the statistical interaction between economic variables and country group. Concretely, the effect of these independent economic variables is examined using probability scores as the predicted values of the dependent variable. Logistic regression is used with binary data when you want to model the probability that a specified outcome will occur. See [Website] for more information.

74. Gross domestic product is an aggregate measure of production equal to the sum of the gross values added of all resident institutional units engaged in production. See [Website] for more information.

75. Gross national income equals the total domestic and foreign output claimed by residents of a country. It consists of gross domestic product (GDP) and factor incomes earned by foreign residents, minus income earned in the domestic economy by non-residents. See [Website] for more information.

76. Gross domestic expenditure on R&D includes expenditure on research and development by business enterprises, higher education institutions, as well as government and private non-profit organizations. See [Website] for more information.

77. See [Website] for more information.

78. See [Website] for more information.

79. In statistics, an interaction occurs given the relationship among three or more variables, and describing a situation in which the simultaneous influence of two variables on a third is not additive. See [Book] for more information.
by means of comparing the probability of the negative annual change,80 in different dependent patent application procedures for both advanced and emerging economies.81

The first patenting procedure examined is that of counting patent applications by proxy of “Applicants' Origin” (or shortly, by origin) applications. This procedure shows worldwide patenting activity of applicants originated from any given country. It is important, since patenting activity of residents may be primarily affected by economic crisis conditions in a country of residence. The second patenting procedure examined is that of counting patent applications by proxy of “Filing Office” applications (or shortly, by office). It counts patent applications filed in the national patent office by all applicants. This procedure was chosen, since that target of patenting in the specific country is promoting sales and suppressing competitors in this country, therefore economic crisis conditions in the country targeted for patenting may affect patenting activity of potential applicants, independently of their origin. The third patenting procedure examined is that of counting patent applications by proxy of “Non-Residents” patent applications (or shortly, non-resident).82 This procedure also counts patent applications filed in the national patent office, but only those filed by foreigners. This procedure was chosen, since country residents are more prone to file applications in local patent office than abroad. Economic crisis conditions thus differently affect residents and non-residents. Statistical data for all three patenting activity procedures are available in annual time series format at WIPO.83 In order to base the analysis on the reliable data, time series over the 16-years period of 1997-2012 have been chosen for all variables.

For each patent applications count three logistic statistical models have been fitted. Each model examines the effect of the three inde-
dependent economic variables, namely GDP, GNI-PPP and GERD. The three types of models are analyzed henceforth.

C. Findings

For each model the following hypotheses have been checked per every single independent variable. In relation, null hypothesis, H_0, represents the article’s main counter argument whereby for each independent variable it is assumed that no statistical difference is accounted for between the two country group classifications. That is, over the influence of each of the three economic variables on the probability of negative change for each patent applications procedure. Consecutively, each H_1 hypothesis assumes the existence of such differing influence of economic crises on patenting procedures in comparing advanced and emerging economies.

From the results represented below, it follows that the influence of the explanatory variables on the negative change probability of different patent application procedures differ per each of the three patent application procedures reviewed.

1. The Emerging Economies Patent Applications Bent

At a start, when the patent application procedure by origin is forecasted, all modeled results shown below demonstrate significant interactions between economic variable and country group type. Models 1.1 – 1.3 presented in equivalent tables below followed by Figure 1 visualizing the regression equations obtained from these models for each of the three economic variables, namely GDP, GNI-PPP and GERD show the results. From models 1.1 – 1.3 the noticeable influence of each economic variable on the probability of the negative change of the patent applications count by origin can be easily seen. That is while the influence of economic crises on patent application by origin count modeled through independent economic variables is much weaker over emerging economies than over advanced economies.

Consequently, when the economic variables’ values rise, the probability of the negative change in patent applications count by origin...
falls. Surely this decline is much steeper for advanced economies than for emerging ones.

Model 1.1 Forecasting probability of negative annual change in patent applications count by origin v. country (random effect), GDP and their interaction (fixed effects)

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-------------|----------|----------|----------------|-----|---------|------|---|
| Intercept | | -0.5736 | 0.1764 | 85.16 | -3.25 | 0.0016 |
| GDP | | -4.3319 | 2.6095 | 844 | -1.66 | 0.0973 |
| Category | Advanced | 0.04615 | 0.2372 | 84.56 | 0.19 | 0.8462 |
| GDP*Category| Advanced | -21.9933 | 4.8672 | 843.8 | -4.52 | <.0001 |

Model 1.2 Forecasting probability of negative annual change in patent applications count by origin v. country (random effect), GNI-PPP and their interaction (fixed effects)

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-------------|----------|----------|----------------|-----|---------|------|---|
| Intercept | | -0.3725 | 0.2001 | 164.1 | -1.86 | 0.0644 |
| GNI-PPP | | -5.7748 | 2.2697 | 836.6 | -2.54 | 0.0111 |
| Category | Advanced | 0.02777 | 0.2684 | 164.5 | 0.10 | 0.9177 |
| GNI-PPP*Category | | -10.5767 | 3.7438 | 828.5 | -2.83 | 0.0048 |

Model 1.3 Forecasting probability of negative annual change in patent applications count by origin v. country (random effect), GERD and their interaction (fixed effects)

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-------------|----------|----------|----------------|-----|---------|------|---|
| Intercept | | -0.8082 | 0.1781 | 34.41 | -4.54 | <.0001 |
| GERD | | -0.3765 | 0.5015 | 571 | -0.75 | 0.4531 |
Fig.1 Probability of negative annual change in patent applications by origin count (vertical axis) v. annual change in economic variables (horizontal axis)

Model 1.1 demonstrates that the only significant independent variable is the combination (interaction) of GDP with country category, while either GDP itself or country category alone have been found insignificant. The influence of this interaction is strongly negative. This means that for advanced economies negative values of GDP annual change would increase a probability of the negative change in patent applications count by origin. For emerging economies on the other hand the influence of GDP annual change on the probability of annual decrease in patent applications count by origin would be much weaker.

This kind of behavior can be clearly seen from Fig.1, which visualizes the dependence of negative change in patent applications count by origin probability on annual change in GDP. While for advanced economies sharp failure in the probability with GDP annual change switch from negative to positive is observed, for emerging economies the probability change is smooth (with values around 0.3-0.5 over the wide range of GDP annual change).

In the case of GNI-PPP economic variable (Model 1.2), both this variable and its interaction with country category demonstrate significant and negative effect, while the influence of the interaction is
stronger. The effect, as can be seen from Fig.1, is similar to GDP, but the difference between advanced and emerging economies is somewhat weaker. As for the third economic variable (GERD) influence, Model 1.3 shows that only the interaction of GERD with country category is significant. Also in this case the effect is negative, but much weaker than that of two previous economic variables. This means that only a strong negative annual change in GERD would provide a negative change in patent applications by origin with high probability for advanced economies. On the other hand, for emerging economies patent applications count by origin is totally insensitive to annual changes of GERD.

As a whole, when patent applications are counted by proxy of applicants’ national origin applications (or shortly, ‘by origin’), the influence of economic crises modeled through independent economic variables is much weaker over emerging economies. That is in comparison with the effect of economic crises over advanced economies across the north-south divide. Put differently, when the values of economic variables consequently rise, the probability of the negative change in patent applications by origin count falls. Surely this decline is much steeper for advanced economies than for emerging ones.

But what might explain these findings? At first sight one recalls that in emerging economies where innovation is predominantly promoted by multinational corporations (MNEs) and by foreign direct investments (FDI) - decisions relating to patenting activity come from outside the country to a large extent. Such investments are thus done less as a response to economic developments within given emerging economies, but as part of an international or at least multinational enterprise.

On that account, one should recall the marginal number of MNEs originating from the developing world with emphasis on emerging economies. The United Nations Conference on Trade and Development’s (UNCTAD) seminal 2005 World Investment Report comes to mind. UNCTAD’s 2005 investment report was pivotal as of 2005 in

87. On the role of MNEs in patenting activity and innovation in developing countries, see, generally, Shih-Fen S. Chen, Extending Internalization Theory: A New Perspective on International Technology Transfer and its Generalization, 36 J. Int’l Bus. Stud. 231, 232 (2005) (assessing the high degree of control that MNEs have over their technology in developing countries); Xavier Martin & Robert Salomon, Tacitness, Learning, and International Expansion: A Study of Foreign Direct Investment in a Knowledge-Intensive Industry, 14 Oce. Sci. 297, 298 (2003) (focusing on the knowledge based assets, such as technological intelligence which MNEs from overseas bring to developing countries); Nicholas C. Georgantzias, MNE Competitiveness: A Scenario-Driven Technology Transfer Construct, 12 Managerial & Decision Econ. 281, 282-83 (1991) (depicting the dominant role of MNEs in developing countries in introducing new technologies and the competition between MNEs thereof).
explaining how over eighty percent of the seven hundred largest R&D spending firms come from only five advanced economies, namely the United States, Japan, Germany, the United Kingdom and France, in descending order. Only one percent of the top seven hundred are based in developing countries or South-East Europe and the former Soviet Bloc’s Commonwealth of Independent States (CIS). Within the list of MNEs from developing countries almost all these firms are concentrated in East Asia, notably from the Republic of Korea and Taiwan Province of China.

This remarkably highly centralized nature of MNEs then helps to understand the WIPO 2010 Indicators report which further illustrates how in 2010, resident applications accounted for 57.4% of total applications in high-income and 52.3% in middle-income economies. The report’s main finding however was that by means of comparison, the resident share of middle-income economies largely incorporating emerging economies (yet excluding China’s State Intellectual Property Office (SIPO)), is only 30.8%. Moreover, in certain adherence with UNCTAD’ 2005 earlier findings, the WIPO report shows that only a fifth of all applications in low-income economies are again resident applications. Likewise, another 2010 survey involving 300 of the largest U.S. companies engaged in outsourcing reveals how a remarkable share of 77% of their outsourcing activity is again international. Outsourcing is thus less affected by economic crises per their impact on emerging economies.

89. Id. at 120. (Table IV.1.) Several countries have moved up the ranks since the late 1990s.

90. Id. at 121 (Table IV.2.) In balance, only one MNC comes from Africa and two are from Latin America. Id.

92. Id.

93. These findings concerning outsourcing rates corroborate the concentration of MNEs operating in emerging economies, while presiding in developed countries. See, Capgemini, Latin America is the third most popular outsourcing destination (2010), at: http://apps.us.capgemini.com/DownloadLibrary/files/factsheets/Capgemini_BPO_LatAmOSdest_fs0610.pdf (The most important outsourcing destination is India used by 60% of the surveyed companies. It is followed by China with 27% and Latin America (excl. Mexico) with 25%. Other Asian countries are less important with 16% just like Western Europe with 14%, Canada (12%) and Mexico (9%)). Two caveats apply. Firstly, the survey does not connote outsourcing with innovative activity such as patenting. Secondly, the survey does not relate the proportion of outsourcers to the total number of MNEs as opposed to smaller companies. Id.

94. Id.
In continuation, firms of different sizes also differ substantially in terms of the effect of financial crises on their partly related innovation performance.55 Surely, not all patenting activity directly connotes innovation, yet the relation is outsized. In such cases, larger firms more readily accommodate shocks to sales given both their internal financial resources as well as larger access to external financial resources.56 By the same token, a 2011 OECD survey of manufacturing companies in Austria, France, Germany, Hungary, Italy, Spain and the United Kingdom shows how innovative companies witnessed a smaller decrease in sales.57 Multinational enterprises continuously are archetypal transferors of technology and innovation across borders.58 That is, as they engage in FDI and other forms of cross-border value-adding activity including patent prosecution.59

Beyond the distinctive financial endurance of MNEs, there stands an explanation as to why patent application rated by origin decreased less in emerging economies inflicted by economic crises. As numerous economic crises literature studies further observe, global shocks pre-dominantly affect advanced economies.60 Less-developed and emerging economies on the other hand, depend exclusively on idiosyncratic shocks, and thus are less vulnerable to crisis spread.61 World renowned Chilean Economist Ricardo Ffench-Davis further explains that the major source of economic fluctuations in emerging economies indeed are external shocks, which are essentially exogenous, and generally independent of economic policies in these countries. So much so, as emerging economies may still be affected by some domestic factors.62 During the 2008 global crisis to illustrate, emerging economies...
were surely less affected by the global decline in growth in comparison with advanced economies.103 Advanced economies saw actual declines in output in 2009 of an average of 3.2%.104 The output of emerging economies, on the other hand grew in 2009, albeit at a more measured pace in contrast to previous years. Their output moderately grew on average 2.5% in 2009 in comparison with 6.1% in 2008 and 8.3% in 2007.105

Be that as it may, MNEs patenting in emerging economies nevertheless patent overseas while focusing mostly on profit maximization internationally.106 In a recent study analyzing the effect of the location of headquarters on investment decisions of approximately 5,000 subsidiaries worldwide, the authors find that foreign ownership encourages a focus on profitability when taking investment decisions.107 The

103 Id. (adding that “This was mainly due to continued growth in developing Asia (notably China, India and Indonesia), but also growth in Africa that compensated for declines elsewhere”). But see, D. M. Prates and M. A. M. Cintra, The emerging-market economies in the face of the Global financial crisis, The Financial and Economic Crisis of 2008-2009 and Developing Countries, United Nations Report 54-70 (2010) (“When this crisis spread and turned into recession, emerging economies were affected, mainly through trade channels, and the consequences of these indirect effects in many countries were as severe as the direct effects in the developed countries.”), available at http://unctad.org/en/docs/edsm20101_en.pdf.

104 Id. (explaining that the actual declines in output in IP systems in Advanced economies in 2009 were most pronounced for European countries (for example, around -5% for Germany and the United Kingdom) and for Japan far lower - around -5%).

105 See, World Intellectual Property Indicators 2010, supra note 26, at 14.

106 This argument makes part of growing theoretical literature on the internationalization of MNEs. See generally, Peter J. Buckley and Mark C. Casson, The internalization theory of the multinational enterprise: A review of the progress of a research agenda after 30 years, 40 J. Int’l Bus Stud. 1563, 1563 (2009) (providing the most inclusive internalization theory analysis across 30 years focusing mainly on the emergence and functioning of MNEs); Shih-Fen S. Chen, Extending Internalization Theory: A New Perspective on International Technology Transfer and its Generalization, 36 J. Int’l Bus Stud. 231, 232 (2005) (attempted to clarify the continued importance of the market. It extends internalization theory by adding hitherto neglected market institutions to the investment versus licensing trade-off in governing the developer-manufacturer cooperation: arm’s length co-marketing, contractual co-marketing and Original equipment manufacturers (OEM)); J. A. Cantwell and L. Piscitello, Accumulating technological competence: Its changing impact on corporate diversification and internationalization, 9 Industrial and Corporate Change 21, 21-51 (2000) (identifying three historical phases in the growth of firms in terms of their patterns of diversification and internationalization). Nicholas C. Georgantzias, MNE Competitiveness: A Scenario-Driven Technology Transfer Construct, 12 Managerial & Decision Econ. 281, 282-83 (1991) (depicting the nature of the competition between MNEs operating in developing countries); Satya Das, Externalities, and technology transfer through multinational corporations: a theoretical analysis, 22 J. of Int’l’Econs 171, 171 (1987) (analyzing the behavior of a multinational firm’s subsidiary in a host country when learning of its production techniques by its native rivals occurs).

MNEs barrier of efficiency in fact is even more powerful than in case of independent firms. This is all the more visible during a host country crisis when MNEs often times withdraw capital and invest elsewhere more easily than domestic firms.

2. Patent Applications by Office Indifference

Secondly, when the probability of negative change of the patent application procedure counted by office is forecasted, this article’s logistic models provide very different results. Counting patent applications by office, to recall, account for fillings in the national patent office by all applicants. This procedure was chosen, since that target of patenting in the specific country is promoting sales and suppressing competitors in this country, therefore economic crisis conditions in the country targeted for patenting may affect patenting activity of potential applicants, independently of their origin.

The dissimilar results here are threefold referring to the effects of GDP, GNI-PPP and GERD as follows. To begin with, model 2.1, representing GDP as an explanatory variable is the only significant variable. This means that the influence of GDP on the probability of annual decrease in the patent applications count by office is not different for both advanced and emerging economies.

Accordingly, chart model 2.2 below, representing GNI-PPP as an explanatory variable, witnesses no significance in influencing the probability of the patent application procedure by office. The probability declines instead (with p-value less than 0.0001). More specifically, the influence of GNI-PPP on the probability of patent application by office is not significantly different for either advanced or emerging economies. In balance, lastly, when the probability of negative change of the patent application procedure by office is forecasted using GERD, model 2.3 demonstrates significant influence of GERD interaction with country type (p-value 0.0002). This means that the influence of GERD on the decrease in patent applications count by office is different for advanced and emerging economies. More specifically, there is no such influence for emerging economies, while for advanced economies GERD influence is evidenced. The results of the models 2.1-2.3 for pa-
tent applications count by office are summarized and visualized also on Figure 2.

In conclusion, when the probability of negative change of the patent application procedure by office is forecasted the overall influence of the three independent variables examined is non significant and thus offer no different effect on emerging economies in comparison with advanced ones.

Model 2.1 Forecasting probability of negative annual change in patent applications count by office v. country (random effect), GDP and their interaction (fixed effects)

Solutions for Fixed Effects

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------------|----------|----------|----------------|----|---------|------|----|
| Intercept | | -0.2555 | 0.1790 | 98.04 | -1.43 | 0.1567 |
| GDP | | -7.0085 | 2.6372 | 839.6 | -2.66 | 0.0080 |
| Category | Advanced | 0.3535 | 0.2370 | 91.14 | 1.49 | 0.1392 |
| GDP*Category | Advanced | -8.4292 | 4.3667 | 839.6 | -1.93 | 0.0539 |

Model 2.2 Forecasting probability of negative annual change in patent applications count by office v. country (random effect), GNI-PPP and their interaction (fixed effects)

Solutions for Fixed Effects

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------------|----------|----------|----------------|----|---------|------|----|
| Intercept | | 0.08930 | 0.2146 | 174 | 0.42 | 0.6779 |
| GNIPPP | | -9.7217 | 2.3924 | 826.7 | -4.06 | <.0001 |
| Category | Advanced | 0.1758 | 0.2820 | 159.9 | 0.62 | 0.5338 |
| GNIPPP*Category | Advanced | -1.4321 | 3.5306 | 826.2 | -0.41 | 0.6851 |

Model 2.3 Forecasting probability of negative annual change in patent applications count by office v. country (random effect), GERD and their interaction (fixed effects)

Solutions for Fixed Effects
Table 1: Estimation Results

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-----------------|----------|----------|----------------|-----|---------|------|---|
| Intercept | | -0.5571 | 0.1844 | 39.98 | -3.02 | 0.0044 |
| GERD | | -0.1280 | 0.4618 | 553.5 | -0.28 | 0.7817 |
| Category | Advanced | 0.6448 | 0.2437 | 43.7 | 2.65 | 0.0113 |
| GERD*Category | Advanced | -7.2895 | 1.9604 | 569 | -3.72 | 0.0002 |

Fig. 2 Probability of negative annual change in patent applications by office count (vertical axis) v. annual change in economic variables (horizontal axis)

When patent applications count by office is taken as a dependent variable, the picture is significantly different. In such case, for GDP itself influence (Model 2.1) was found significant.111 A similar observations were found for the GNI-PPP economic variable (Model 2.2).112 In both cases the effect is negative, but for GNI-PPP its absolute value is much lower than for GDP. GERD, oppositely, shows rather strong, negative and significant interaction effect (Model 2.3), while pure GERD effect is insignificant. Fig. 2 summarizes and visualizes these effects. It can be seen that the difference between advanced and emerging economies for GDP as an economic variable is much less pronounced than in the case of patent applications by origin as a dependent variable (Fig.1), for GNI-PPP this difference is negligible, and for GERD, again, patenting activity in emerging economies is totally insensitive to

111 The interaction was not significant as the p-value was found to be above 0.05.
112 In this case interaction shows p-value as high as 0.6851, indicating negligible significance.
changes in this variable. The fact that by office patent applications do not account for the separate contribution of MNEs operating from overseas, may explain these dissimilar results in comparison with the previous by origin patent application count.

So far we have examined two of three patent application procedures, namely by origin and by office. A third patent application procedure follows. It is as said the application procedure by non-resident.

Such patent procedure to recall counts patent applications filed in the national patent office, but only those filed by foreigners. This procedure was chosen, since country residents are more prone to file applications in local patent office than abroad.

When the probability of the negative change in non-resident patent applications is forecasted, the overall non-significant results are similar to those for patent applications by office. Model 3.1, similar to model 2.1 demonstrates that the only significant explanatory economic variable is GDP (p-value 0.0078). The influence of GDP on the probability of annual decrease in non-resident patent applications is thus not different for advanced and emerging economies. Also model 3.2 shows similar influence of GNI-PPP on the probability of the negative annual change in non-residents application for both types of country groups (p-value in this case is 0.0063). As for the influence of GERD, model 3.3 demonstrates no influence of this explanatory variable on the probability of negative change in non-resident patent applications for both types of country groups. The probability of the patent count decrease in this case is in the range 40-50%, as can be seen in almost parallel lines in Figure 3 below.

Model 3.1 Forecasting probability of negative annual change in non-resident patent applications count v. country (random effect), GDP and their interaction (fixed effects)

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-------------------|----------|----------|----------------|----|---------|------|---|
| Intercept | | 0.02330 | 0.1769 | 117.6 | 0.13 | 0.8954 |
| GDP | | -7.1249 | 2.6710 | 822.3 | -2.67 | 0.0078 |
| Category | Advanced | 0.2178 | 0.2329 | 105.3 | 0.94 | 0.3518 |
| GDP*Category | Advanced | -0.7927 | 4.1867 | 821.8 | -0.19 | 0.8499 |
Model 3.2 Forecasting probability of negative annual change in non-resident patent applications count v. country (random effect), GNI-PPP and their interaction (fixed effects)

Solutions for Fixed Effects

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t|
|----------------|----------|----------|----------------|-----|---------|-------|
| Intercept | | 0.1074 | 0.2046 | 182.1 | 0.52 | 0.6003 |
| GNIPPP | | -6.0444 | 2.2067 | 816.9 | -2.74 | 0.0063 |
| Category | Advanced | 0.2882 | 0.2724 | 170.7 | 1.06 | 0.2916 |
| GNIPPP*Category| Advanced | -1.0752 | 3.3108 | 815.1 | -0.32 | 0.7455 |

Model 3.3 Forecasting probability of negative annual change in non-resident patent applications count v. country (random effect), GERD and their interaction (fixed effects)

Solutions for Fixed Effects

| Effect | Category | Estimate | Standard Error | DF | t Value | Pr > |t|
|----------------|----------|----------|----------------|-----|---------|-------|
| Intercept | | -0.2610 | 0.1993 | 38.2 | -1.31 | 0.1981 |
| GERD | | -0.1661 | 0.4484 | 533.9 | -0.37 | 0.7113 |
| Category | Advanced | 0.3937 | 0.2642 | 40.96 | 1.49 | 0.1439 |
| GERD*Category | Advanced | -0.1020 | 1.6980 | 553.1 | -0.06 | 0.9521 |

![Graph](image)
Fig. 3 Probability of negative annual change in non-resident patent applications count (vertical axis) v. annual change in economic variables (horizontal axis)

Finally, when the non-resident patent applications count is considered as a dependent value, two of the economic variables were found significant separately (GDP in Model 3.1 and GNI-PPP in Model 3.2), while their combinations with country category were found essentially insignificant. As for GERD influence, Model 3.3 demonstrated insignificance of all the independent variables included. No difference between advanced and emerging economies in influence of separate economic variables on this kind of patenting activities has been observed, as Fig. 3 illustrates.

Three additional models labeled as models 1.1Y - 1.3Y were fitted referring to the global crisis years of 2001 and 2008 as a fixed factor. The former, also known as “Early 2000s Recession”, affected the European Union, the United States, Turkey, Argentina and other countries and was triggered by the “Dot-com Bubble” collapse in 2000. This recession was relatively short and mild. Alternatively, the latter economic crisis caused the 2008 recession, triggered by housing bubble collapse in the USA, was spread worldwide and hit many countries with different degree of severity. The purpose of this section is to corroborate this article’s findings with data concerning the two global crises years which fell within the article’s annual time series of 1997-2012. The three models herein are complementary to the three economic variables described above, namely GDP, GNI-PPP and GERD. As models 1.1Y-1.3Y forecast below, the annual negative change in patent applications count by origin, in all three cases demonstrate significance.

of year and interactions over patenting application procedures in the two country groups (p-values less than 0.05).115

In analogy, as models 1.1-1.3 above have demonstrated, there is a significant influence of each economic variable reviewed on the probability of negative change in patent applications count \textit{by origin}. That is, as this influence is much milder for emerging economies than for advanced ones per the two crisis years reviewed. In any case, decrease in the value of the economic variables significantly increases the probability of negative change in patent applications count \textit{by origin}, and. Thus, if Figure 1 above represent general dependence of said probability on the annual change in economic variables, positive or negative, Figures 4-6 below demonstrate such dependence for specific years with predominantly negative change in economic variables for most advanced economies. It further shows significant slowdown for most emerging economies. It can be seen that the difference between advanced and emerging economies is much more pronounced for the crises wrecked years of 2001 and 2008 in comparison with the overall patent application \textit{by origin} examination per Figure 1 above, as follows.

Model 1.1Y Forecasting probability of negative change in patent applications count by origin by means of the following explanatory variables: country (random effect), GDP, category and their interaction (fixed effects) and year (fixed factor)

| Category | Year | Estimate | Standard Error | DF | t Value | Pr > |t| |
|-----------|------|----------|----------------|----|---------|------|--|
| Intercept | | -0.3116 | 0.3306 | 527.8 | -0.94 | 0.3464 |
| GDP | | -1.2902 | 3.0350 | 822.5 | -0.43 | 0.6709 |
| Category | Advanced | 0.04762 | 0.2500 | 85.51 | 0.19 | 0.8494 |
| GDP* | Advanced | -20.3347 | 5.1092 | 829 | -43.98 | <.0001 |
| Year | 1997 | 0.02819 | 0.4137 | 780 | 0.07 | 0.9457 |
| Year | 1998 | -1.3148 | 0.4811 | 779.2 | -2.73 | 0.0064 |
| Year | 1999 | 0.09868 | 0.4101 | 779 | 0.24 | 0.8099 |
| Year | 2000 | -0.8407 | 0.4708 | 781.2 | -1.79 | 0.0745 |
| Year | 2001 | -0.1324 | 0.4045 | 775.7 | -0.33 | 0.7436 |
| Year | 2002 | 0.05813 | 0.4007 | 776.6 | 0.15 | 0.8847 |

115. Since interactions have been found significant, the influence of the main effects can be explained via these interactions as represented on Figures 4-6 below for years 2001 and 2008 only. That is since the representation of the year as an additional variable will complicate visualization.
Year 2003 -0.3688 0.4167 778.1 -0.88 0.3765
Year 2004 -1.0255 0.4834 782.6 -2.12 0.0342
Year 2005 -0.6869 0.4463 781.7 -1.54 0.1242
Year 2006 -0.6019 0.4525 784.6 -1.33 0.1839
Year 2007 -0.7201 0.4611 784.8 -1.56 0.1187
Year 2008 -0.4412 0.4090 774.9 -1.08 0.2809
Year 2009 0.3228 0.4222 790.1 0.76 0.4447

| Category | Year | Estimate | Standard Error | DF | t Value | Pr > |t| |
|----------|------|----------|----------------|----|---------|------|
| Year 2010 | -1.1987 | 0.4759 | 778.4 | -2.52 | 0.0120 |
| Year 2011 | -0.07861 | 0.4033 | 776.2 | -0.19 | 0.8455 |

Type III Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>1 815</td>
<td>815</td>
<td>14.27</td>
<td>0.0002</td>
</tr>
<tr>
<td>Category</td>
<td>1 85.51</td>
<td>85.51</td>
<td>0.04</td>
<td>0.8494</td>
</tr>
<tr>
<td>GDP*Category</td>
<td>1 829</td>
<td>829</td>
<td>15.84</td>
<td><.0001</td>
</tr>
<tr>
<td>Year</td>
<td>15 779.4</td>
<td>779.4</td>
<td>2.06</td>
<td>0.0102</td>
</tr>
</tbody>
</table>

![Graph](image)

Fig.4 Probability of negative change in patent applications count by origin (vertical axis) v. annual changes in GDP (horizontal axis)
Model 1.2Y Forecasting probability of negative change in patent applications count by origin by means of the following explanatory variables: country (random effect), GNI-PPP, category and their interaction (fixed effects) and year (fixed factor)

| Category | Year | Estimate | Standard Error | DF | t Value | Pr > |t| |
|----------|------|----------|----------------|----|----------|--------|
| Intercept| | -0.03142 | 0.3466 | 559.5 | 0.09 | 0.9278 |
| GNIPP | | -3.9551 | 2.6293 | 822.5 | -1.50 | 0.1329 |
| Category | Advanced | 0.01618 | 0.2882 | 164 | 0.06 | 0.9553 |
| GNIPPP* | Advanced | -9.7950 | 3.9628 | 815.5 | -2.47 | 0.0136 |
| Year | 1997 | -0.1822 | 0.4050 | 772.5 | -0.45 | 0.6529 |
| Year | 1998 | -1.5509 | 0.4765 | 774.8 | -3.25 | 0.0012 |
| Year | 1999 | -0.2354 | 0.4024 | 771.7 | -0.58 | 0.5588 |
| Year | 2000 | -0.9705 | 0.4655 | 775.6 | -2.08 | 0.0374 |
| Year | 2001 | -0.2600 | 0.4015 | 771.6 | -0.65 | 0.5174 |
| Year | 2002 | -0.1090 | 0.3972 | 771.2 | -0.27 | 0.7839 |
| Year | 2003 | -0.5859 | 0.4120 | 772.2 | -1.42 | 0.1554 |
| Year | 2004 | -1.1722 | 0.4760 | 774.8 | -2.46 | 0.0140 |
| Year | 2005 | -0.8259 | 0.4409 | 775.6 | -1.87 | 0.0615 |
| Year | 2006 | -0.5488 | 0.4579 | 782.2 | -1.20 | 0.2311 |
| Year | 2007 | -0.9896 | 0.4630 | 774.4 | -2.14 | 0.0329 |
| Year | 2008 | -0.5120 | 0.4130 | 771.3 | -1.24 | 0.2154 |
| Year | 2009 | 0.2706 | 0.4145 | 777.3 | 0.65 | 0.5141 |
| Year | 2010 | -1.4293 | 0.4724 | 772.8 | -3.03 | 0.0026 |
| Year | 2011 | -0.1259 | 0.4014 | 770.8 | -0.31 | 0.7538 |

Type III Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num</th>
<th>Den</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF</td>
<td>DF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5 Probability of negative change in patent applications count by origin (vertical axis) v. annual changes in GNI-PPP (horizontal axis)

Model 1.3Y Forecasting probability of negative change in patent applications count by origin by means of the following explanatory variables: country (random effect), GERD, category and their interaction (fixed effects) and year (fixed factor)

Solutions for Fixed Effects

<table>
<thead>
<tr>
<th>Category</th>
<th>Year</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td>-0.5513</td>
<td>0.4069</td>
<td>367.8</td>
<td>-1.35</td>
<td>0.1763</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERD</td>
<td></td>
<td>0.06267</td>
<td>0.4914</td>
<td>547.9</td>
<td>0.13</td>
<td>0.8985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Advanced</td>
<td>-0.1391</td>
<td>0.2579</td>
<td>38.9</td>
<td>-0.54</td>
<td>0.5926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERD* Category</td>
<td>Advanced</td>
<td>-4.5098</td>
<td>2.1313</td>
<td>557</td>
<td>-2.12</td>
<td>0.0348</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Type III Tests of Fixed Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERD</td>
<td>1</td>
<td>557</td>
<td>4.11</td>
<td>0.0430</td>
</tr>
<tr>
<td>Category</td>
<td>1</td>
<td>38.9</td>
<td>0.29</td>
<td>0.5926</td>
</tr>
<tr>
<td>Gerd*Category</td>
<td>1</td>
<td>557</td>
<td>4.48</td>
<td>0.0348</td>
</tr>
<tr>
<td>Year</td>
<td>14</td>
<td>519.6</td>
<td>2.97</td>
<td>0.0002</td>
</tr>
</tbody>
</table>
Additional Models 1.1Y-1.3Y were applied to check the relevance of the above mentioned findings for years of global or, at least, widespread economic crisis. Two years—2001 and 2008 were chosen, the former is associated with so-called “Early 2000-s Recession”, and the latter with the global recession following the 2007 financial crisis. The three models include one dependent variable—patent applications count by origin, and independent variables according to Models 1.1—1.3 respectively. They include also years as a fixed factor. The results for Model 1.1Y, including GDP as an economic variable, show significance of GDP, its interaction with country category, and of year. This is different from Model 1.1, in which only the interaction significance was established.

Fig.4 shows a strong influence of GDP change on the probability of negative change in patent applications count by origin for advanced economies, whereas for emerging economies an essential indifference could be observed. Similar picture can be observed on Fig. 5 for Model 1.2Y, which includes GNI-PPP as an economic explanatory variable. Also in this case economic variable, its interaction with country category, and year were found significant. One can see the noticeable difference in advanced and emerging economies patenting activity behavior: the latter demonstrates essential indifference to economic variable changes even in the crisis years. Fig. 6 illustrates the results of the Model 1.3Y, including GERD as an explanatory economic variable. Also in this case the difference between advanced economies (strong dependence of patenting activity on GERD changes) and emerging economies (essential indifference of patenting activity to GERD changes) could be observed.

These observations show first that the response of the patenting activity to change in the economic variables is year sensitive. These observations further shows that the type of this response, different for advanced and emerging economies, is essentially the same for diverse and concrete crisis years. Models 1.1-1.3 describe patenting activity response to economic development along the years, when annual changes of economic variables for different countries could be positive.
or negative, according to the business cycle phase. However, for two chosen years, included in Models 1.1Y-1.3Y, changes of economic variables were strongly biased to negative values for a wide range of countries, due to the spread of the economic crisis. The obtained results show that, even in this case, the probability of negative change in patent applications count by origin for emerging economies remained much less sensitive to economic development.

The results described above should not be understood as a lack of response of the patenting activity to economic developments, and, specifically, to economic crises for emerging economies. They solely demonstrate that the real decrease in patent applications count by origin is much less probable for emerging economies than for advanced ones altogether. Notwithstanding these findings, a certain slowdown in the rate of annual change of patent applications count by origin (yet remaining positive) has been observed for most emerging economies in 2008-2009. These findings may help finding policies to protect innovation or at least patenting filling activity from the influence of business cycle downturns, recessions and other crisis effects. The reasons being it, that successful innovation and more so patenting activity could possibly be perceived a key factor for recovery from crises while overcoming their negative consequences.

D. Conclusions

The analysis of all nine models described shows how different patenting filing procedures separately convert as economic crisis conditions come about. GDP changes affect all of the three analyzed types of patenting activities. That is so, as economic crisis conditions significantly increase the probability of negative change in patent applications count with decrease in economic variable value. What is more is that crisis conditions influence patenting activity in advanced and emerging economies distinctively. For patent applications by origin where MNEs take central stage this difference is very pronounced. In such case, annual negative change in GDP in advanced economies is followed by negative change in the count of patent applications, originated from the same country, with high probability. Then again, in emerging economies patent applications by origin are essentially indifferent to changes of GDP. This may indicate that in emerging economies, where innovation is predominantly promoted by multinational corporations and FDI as said, patenting activity-related decisions come from outside the country. In such cases patenting is substantively less
of reactive to economic developments within emerging economies themselves.

Furthermore, when the count of patent applications by office is considered as a dependent variable, the difference in its response to economic changes is much less pronounced for advanced and emerging economies. This count includes either domestic or foreign patent applications. Foreign patenting is aimed predominantly to increase market shares and suppress competitors, while the motives for domestic patenting could be different, such as primary filing for priority. In this case a much closer behavior of patenting activity in advanced and emerging economies vis-à-vis annual changes of GDP is observed.

Turning to the non-resident patent applications count as a dependent variable, one can observe an almost identical behavior of this kind of patenting activity in advanced and emerging economies. That is, with regard to annual changes in GDP. Since non-resident patent applications represent foreign patenting in the country's Patent Office, it may mean that the response of foreign patent applications filing to the domestic economic development is similar for different groups of countries. So much so, at least for emerging and advanced economies. This makes sense in the assumption that advanced and emerging economies constitute important markets for innovative technologies and products. They similarly offer a mix of players present in non-resident patent applications filing activity in each country, excluding domestic applicants. These domestic applicants may make difference between applications by office and non-resident applications behavior.

Switching to GNI-PPP as an independent economic variable, similar behavior of three types of patent applications counts are observed. The effect here is nevertheless significantly less pronounced. The difference between GDP and GNI-PPP is in that the former measures domestic economic output, including gross values added by foreign producers functioning in the country, and excluding those added by residents functioning outside the country. The latter on the other hand measures gross national income, including domestic and foreign output claimed by residents, but excluding that of foreign producers functioning within the country. These foreign producers, originating mainly from advanced economies, are responsible for the lion's share of innovation and R&D thereof in emerging countries. Residents of emerging economies presiding overseas on the other hand thus seem much less influential for patenting and possibly innovative activity in these countries. Conversely, residents of advanced economies presiding overseas are substantively more influential.
The analysis observed differently when GERD was chosen as an explanatory independent economic variable. For emerging economies in this case a totally indifferent behavior of all three kinds of patenting activities to annual change of GERD was established. In the case of non-resident applications such indifference was observed also for advanced economies. For patent application counts by origin and by office the difference in patenting activity behavior between advanced and emerging economies in response to GERD changes could be explained similarly to the above explanation of GNI-PPP influence. It could be expected that innovation activity in emerging countries, predominantly led by foreign and multinational corporations would not depend on changes of domestic GERD that is predominantly financed by the public sector. That should not be the case in the advanced economies, where significant influence of business R&D investments on domestic patenting activity could be expected.

As for non-resident patent applications count, this variable presents merely foreign patenting activity that naturally is not expected to depend on the domestic R&D expenditures. Therefore total indifference could be observed for both advanced and emerging economies.

III. THEORETICAL RAMIFICATIONS

Extreme disruption of financial and monetary systems seemingly affects patenting activity. Labeled as economic crises, they do so whether patenting activity is measured by patent application rates proxied by origin, by office or by non-residents.

That said, four conceptual and methodological constraints still entail further research. To start with, given the loose causality between patenting application rates and innovation-based growth, also the connection between economic crises on innovation-based growth remains unsettled. Up to now, no linear connection linking R&D expenditure as proxy of innovation and patent filing activity has been accurately established.116 This relation necessitates further analysis. That is notwithstanding empirical evidence showing that R&D as a chief proxy of innovation is predominantly pro-cyclical, concentrated in the boom phases of business cycles and thinned out in crises.117

At first sight, one could draw parallel between R&D propensity rates and patent filling rated by origin, across the north-south divide.

116 See, World Intellectual Property Indicators 2010, supra note 26, at 21.
The impact of the 2008 economic crisis indeed indicates such comparable gap herein. Estimates by the 2009 Battelle and R&D Magazine suggests in fact that per total world R&D investments for 2009 would of almost 1% lower than in 2008, an overall figure masks substantial differences amid countries. A notable 3.7% increase in R&D spending in 2009 was perceived per Asia. China most notably increased by 20% and India by an increasing rate of 5%. The United States and other Americas economies, Japan and Europe on the other hand were estimated to drop by more than 2%, 5.5% and 4%, respectively. Similar findings are found for Europe. A 2009 cross-country survey of European firms, finds that in response to the 2008 global economic crisis firms were two to three times more likely to save on innovation cost spending. Overall, evidence from 2009 seems to confirm that the 2008 crisis and economic downturn have had a chilling effect over firms’ expenditures on innovation, similar to the one witnessed with patent filling rates as said.

Yet, not all R&D activity connotes patenting prosecution or patent filling. WIPO’s 2010 Indicators report confirms that per a series of top 100 PCT applicants and their R&D expenditure finds a positive and considerable correlation between R&D investment and PCT applications across the top PCT applicants. R&D expenditure however explains less than 10% of the variation in patent applications. Put differently, a certain number of firms with relatively low R&D expenditure still file a large number of patents. Patent filing intensity is influenced by a large number of factors which still embed further examination. These surely are the level of R&D and business R&D in particular, institutional incentives to patent, and education and science and technology policies and more.

The effect of economic crises on patenting activity embeds further theoretical adjustment. It relates to a second parallel that possibly exists between the effects of economic crises on patenting filing rates on the one hand, and FDI inflows on the other. Interestingly enough, FDI

119. See, OECD Science, Technology and Industry Outlook 2010, supra note 55, at 34 (referring to See, EC, Innobarometer Policy Measures for Gender Equality in Science, EUR 23314, Luxembourg, Adding that “overall 200% of firms had decreased their innovation expenditures in the previous six months as a direct result of the economic downturn, while 9% had increased their innovation buddeet.”).
121. Id.
122. Id.
123. Id.
inflow rates into emerging economies during economic crises offer surprising stability, a sizable component of which are mergers and acquisitions by MNEs operating in emerging economies. There is in fact a stable record showing that FDI flows are less volatile as compared with other foreign capital flows in the form of portfolio investment and debt how economic crises. Research on this phenomena still needs to account for the intriguing resemblance with the effect of economic crises on patent filling rates across the development divide. Surely, the role of MNEs per the case of FDI inflows is similarly pivotal. In an influential article titled Fire-Sale Foreign Direct Investment and Liquidity Crises economist professors Mark Aguiar and Gita Gopinath provide decisive evidence that a component of the stability of the FDI flows in the 1997-1998 Asian crisis relates to the merger and acquisition activity of MNEs. So much so, as MNEs were able to purchase domestic firms at exemplary ‘fire-sale’ prices.

Amidst these conceptual theoretical considerations, certain other methodological issues remain outside the scope of this article. To recall, a high probability was found for decrease in patent applications count by origin under crisis conditions in the case of advanced economies. A question remain however as to whether there is causality or coincidence between this probability and economic crisis? A separate Granger causality study could clarify this issue. Neighboring research herein is telling. One important contribution is worth mentioning. That is the work of Lee, Lin, Chuang and Lee who estimated the existence of dual Granger causality between research output and economic output (measured through GDP) for Asian countries, including Taiwan, South Korea and Singapore. For some developed countries one-way causality was estimated, namely for Norway, the United States, Spain and Israel, where economic output changes cause change in research output. For the group of developing countries, including China, India, Japan and Poland, no causality between research and economic output was nevertheless found. As their article measures scientific publications but not patent filling counts as a measure of the research output, further adaptation to patent counts could be illustrative.

124. Mark Aguiar and Gita Gopinath, supra note 22, at 439 (Fig 1 showing capital inflows into East Asia between 1986-1999; “This stability in FDI contrasts with the sharp reversals in portfolio flows and bank lending”).

125. W. Carlin, A. Charlton and C. Mayer, supra note 107, at 32.

126. Aguiar and Gopinath uphold that M&A activity is consistent with the tightening of liquidity constraints for domestically owned firms. See, Mark Aguiar and Gita Gopinath, supra note 22, at 439.

Lastly, further research should account for mitigating economic variables measuring the effects of economic crisis conditions on patenting activity. It could target not only economic outputs, such as GDP or GNI, but also crisis conditions inputs, including monetary and credit variables and interest rates. More particularly, such measurements could include imports and exports of goods and services, current account balance, domestic credit provided by financial sector and as abovementioned also foreign direct investments. Studying the influence of these factors on patenting activity could help to locate the critical link responsible for patent activity and suggest the respective counter-cyclical policy to protect innovation against economic crisis consequences.

CONCLUSION

Crisis conditions influence patenting activity in advanced and emerging economies differently. For patent applications by origin where MNEs take central stage this difference is presumably evident. In such case, annual negative change in GDP in advanced economies is followed by negative change in the count of patent applications, originated from the same country, with high probability. Then again, in emerging economies patent applications by origin are essentially indifferent to changes of GDP. This may indicate that in emerging economies, where innovation is predominantly promoted by multinational corporations and at times funneled by FDI as said, patenting activity-related decisions come from outside the country. In such cases patenting is substantively less reactive to economic developments within emerging economies themselves.

As a whole, for patent applications count by origin the probability of negative annual change strongly and negatively depends on annual change of GDP, GNI-PPP and GERD respectively for advanced economies. In balance, for emerging economies this dependence is much weaker and in the case of GERD it is negligible. For advanced economies the strongest response was observed on GDP annual change and the weakest - on GERD.

For patent applications by office where the numerical significance of MNEs is unclear the probability of negative change was rather similar for advanced and emerging economies as a response to annual change of the economic variables. For non-resident patent applications the difference between advanced and emerging economies with regard to their response to annual change in economic variables was negligible.
The obtained results may indicate the different sources of patenting activity and maybe even innovation at large, in two categories of economies. In emerging economies patenting activity is led predominantly by foreign and multinational corporations, functioning within the country that are less influenced by domestic economic developments. Business decisions by MNEs in emerging economies are arguably done less as a response to economic developments within given emerging economies. Such decisions, and particularly over patenting abroad possibly are part of a less dependent business strategy on local crisis conditions in such target countries.

These findings were verified for two specific years of global economic crises, when annual change in economic variables were strongly biased to negative values, and it was demonstrated that even in this case patent applications by origin in emerging economies show very low probability of negative annual change as a response to economic development. These findings may alternatively indicate either higher resistance or suspended response by emerging economies to economic crises. This and other alternative explanations also entail future examination.